Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #46 Jul 14 2019 13:34:55
%S 1,3,4,5,8,47,49,95,247,251,253,742,4268,4270,4288,11445,30123,30701,
%T 30703,62592,62690,62992,3535871,3535872,3664203,3664204,3664214,
%U 3664220,3665670,3665696,3665842,3665854,3665866,3708907,3708909,3708913,3708929,3708931,3708935,3708957,3708983,3708985,3709017
%N Terms of the Leibniz formula (as Euler product) that generate successively better approximations to Pi.
%H Steven Lubars, <a href="/A261208/b261208.txt">Table of n, a(n) for n = 1..71</a>
%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Leibniz_formula_for_%CF%80#Euler_product">Euler Product</a>
%F Pi = 4*b(1)*b(2)*b(3)*... where b(n) is the n-th odd prime (A065091) divided by its nearest multiple of 4.
%F Let c(n) be the n-th term of the expansion such that c(n) = 4*b(1)*...*b(n). The sequence consists of the values n such that c(n) provides a closer approximation of Pi than previous approximations c(1)...c(n-1).
%e Calculating the first 8 terms: c(1)=3, c(2)=3.75, c(3)=3.28125, c(4)=3.0078125, c(5)=3.2584635416, c(6)=3.462117513020833, c(7)=3.289011637369791, c(8)=3.1519694858127165.
%e In the above sequence, terms 1, 3, 4, 5, and 8 provide successively closer approximations of Pi (whereas approximations 2, 6, and 7 do not).
%o (PARI) nearmul(p) = if (p % 4 == 1, p-1, p+1);
%o lista(nn) = {print1(lb = 1, ", "); v = 3; ld = abs(Pi-3); for (n=2, nn, np = prime(n+1); v *= np/nearmul(np); if ((nld=abs(Pi-v)) < ld, print1(n, ", "); ld = nld););} \\ _Michel Marcus_, Aug 14 2015
%o (MUMPS)
%o s Pi=3.141592653589793238,a=3,n=1,d=Pi-a
%o w !,1
%o f i=6:6:1e10 d
%o . s L=i+1**.5\1
%o . f j=i-1:2:i+1 d
%o . . f k=3:2:L q:'(j#k)
%o . . i j#k d
%o . . . s a=a*j/(j#4+j-2),n=n+1
%o . . . i $FN(Pi-a,"-")<d d
%o . . . . s d=$FN(Pi-a,"-")
%o . . . . w !,n ; _Steven Lubars_, Aug 14 2015
%Y Cf. A065091, A076342.
%K nonn
%O 1,2
%A _Steven Lubars_, Aug 11 2015