login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261111 Number of (n+2)X(6+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00010001 00010101 or 01010101 1

%I

%S 289,790,2902,10268,35934,127038,449132,1582692,5580762,19696792,

%T 69493124,245136960,864834010,3051137218,10764053222,37974619476,

%U 133971821170,472641282700,1667438793734,5882591495818,20753304044252

%N Number of (n+2)X(6+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00010001 00010101 or 01010101

%C Column 6 of A261113

%H R. H. Hardin, <a href="/A261111/b261111.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 2*a(n-1) -2*a(n-2) +17*a(n-3) +16*a(n-4) +45*a(n-5) +44*a(n-6) +a(n-7) -14*a(n-8) -72*a(n-9) -126*a(n-10) -168*a(n-11) +14*a(n-12) +436*a(n-13) +288*a(n-14) -354*a(n-15) -316*a(n-16) +132*a(n-17) +181*a(n-18) -2*a(n-19) -53*a(n-20) -25*a(n-21) -3*a(n-22) +a(n-23) +5*a(n-24) +2*a(n-25) +a(n-26) +a(n-27) for n>28

%e Some solutions for n=4

%e ..0..0..1..0..1..0..1..0....1..0..1..0..0..0..1..0....0..1..0..0..0..1..0..0

%e ..0..1..0..0..0..1..0..0....0..1..0..1..0..1..0..1....0..0..1..0..1..0..1..0

%e ..1..0..1..0..1..0..1..0....0..0..1..0..1..0..0..0....0..1..0..1..0..1..0..1

%e ..0..1..0..1..0..1..0..1....0..1..0..1..0..1..0..1....1..0..0..0..1..0..1..0

%e ..1..0..1..0..0..0..1..0....1..0..1..0..0..0..1..0....0..1..0..1..0..1..0..0

%e ..0..0..0..1..0..1..0..0....0..0..0..1..0..1..0..0....0..0..1..0..0..0..1..0

%Y Cf. A261113

%K nonn

%O 1,1

%A _R. H. Hardin_, Aug 08 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 25 11:03 EDT 2021. Contains 347654 sequences. (Running on oeis4.)