The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A261021 a(1)=0; for n > 1, a(n) is the number k such that the set of the decimal digits is an additive group Z/mZ where m is the sum of the decimal digits. 2

%I #48 Jan 17 2024 09:15:00

%S 0,101,102,110,120,201,202,204,210,220,240,303,306,330,360,402,404,

%T 408,420,440,480,505,550,603,606,630,660,707,770,804,808,840,880,909,

%U 990,1001,1002,1010,1020,1100,1200,2001,2002,2004,2010,2020,2040,2100,2200,2400

%N a(1)=0; for n > 1, a(n) is the number k such that the set of the decimal digits is an additive group Z/mZ where m is the sum of the decimal digits.

%C By convention, a(1)=0 because the trivial additive group is usually denoted by 0 where 0 is the identity element.

%C Let d(1)d(2)..d(q) be the q decimal digits of a number k. The principle of the algorithm is to compute all the sums (d(i)+ d(j))/mZ for 1 <= i,j <= q, and also the additive inverse of each element such that if x is in the group, then there exists x' in the group where x+x' = 0.

%C The sequence is infinite because the numbers 101, 1001, 10001, ... are in the sequence and generate the group {0,1}.

%C Only terms of A009996 containing at least one 0 have to be checked. Terms that match the criterion and numbers containing at least one 0 formed by permutations of their digits form all terms of this sequence due to commutativity of addition. - _David A. Corneth_, Aug 13 2015

%H David A. Corneth, <a href="/A261021/b261021.txt">Table of n, a(n) for n = 1..10000</a> (first 281 terms from Michel Lagneau)

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/FiniteGroup.html">Finite Group</a>

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Finite_group">Finite group</a>

%F For d >= 3, there are (d - 1) * 17 terms having d digits. - _David A. Corneth_, Aug 13 2015

%e 408 is in the sequence because 4+0+8 = 12 and the elements {0, 4, 8} is an additive group, subgroup of (Z/12Z,+) with 6 elements {0, 2, 4, 6, 8, 10). Each element has an inverse: 2+10 == 0 (mod 12), 4+8 == 0 (mod 12), 6+6 == 0 (mod 12), 8+4 == 0 (mod 12) and 10+2 == 0 (mod 12).

%e The subsequence having the same property with Z/12Z is {408, 480, 606, 660, 804, 840, 4008, 4080, 4800, 6006, 6060, 6600, 8004, 8040, 8400, 40008, 40080, 40800, 48000, 60006, 60060, 60600, 66000, 80004, 80040, 80400, 84000, ...}.

%p nn:=3000:

%p for n from 1 to nn do:

%p x:=convert(n,base,10):nn0:=length(n):

%p lst1:={op(x),x[nn0]}:n0:=nops(lst1):

%p s:=sum('x[i]', 'i'=1..nn0):lst:={}:

%p if lst1[1]=0 then

%p for j from 1 to n0 do:

%p for l from j to n0 do:

%p p:=irem(lst1[j]+lst1[l],s):lst:=lst union {p}:

%p od:

%p od:

%p if lst=lst1

%p then

%p n3:=nops(lst1):lst2:={}:

%p for c from 1 to n3 do:

%p for d from 1 to n3 do:

%p if irem(lst1[c]+lst1[d], s)=0

%p then

%p lst2:=lst2 union {lst1[c]}:

%p else

%p fi:

%p od:

%p od:

%p if lst2=lst

%p then

%p printf(`%d, `, n):

%p else

%p fi:

%p fi:

%p fi:

%p od:

%o (PARI) is(n) = {my(d = digits(n),s = Set(digits(n))); if(n==0,return(1));

%o if(#s==2 || #s==3,return(s[1]==0 && (s[#s] / s[2] == 2^(#s-2)) && hammingweight(d)==2),return(0))}

%o \\a(n) works for n > 1.

%o a(n) = {my(qd = ((-1 + sqrt(1 + 8*(n + 15+1/2) / 17)) / 2)\1 + 2, v = vector(qd),i=1,h=2); n -= (binomial(qd-1,2)*17 -16); while(n-(qd-1)*h>0,

%o n-=(qd-1)*h;i++; h=1 + (i%2 == 0) + (i < 5)); n--; v[1]=i;

%o v[qd-n\h] = i*2^(n%h-(i%2==0)); sum(i=1,#v,10^(#v-i)*v[i])} \\ _David A. Corneth_, Aug 13 2015

%Y Cf. A009996, A261020.

%K nonn,base

%O 1,2

%A _Michel Lagneau_, Aug 07 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 25 17:00 EDT 2024. Contains 372804 sequences. (Running on oeis4.)