login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Practical numbers of the form p - 1 where p is a prime.
0

%I #19 Dec 01 2015 15:42:02

%S 1,2,4,6,12,16,18,28,30,36,40,42,60,66,72,78,88,96,100,108,112,126,

%T 150,156,162,180,192,196,198,210,228,240,256,270,276,280,306,312,330,

%U 336,348,352,378,396,400,408,420,432,448,456,460,462,486,520,522,540,546

%N Practical numbers of the form p - 1 where p is a prime.

%C Intersection of A005153 and A006093. - _Michel Marcus_, Nov 16 2015

%e a(5)=12 as 12 is a practical number and 12+1=13 is prime. It is the 5th such practical number.

%t PracticalQ[n_] := Module[{f, p, e, prod = 1, ok = True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; Select[Table[Prime[n]-1, {n, 1, 200}], PracticalQ] (* using _T. D. Noe_'s program A005153 *)

%o (PARI) is(n) = bittest(n, 0) && return(n==1); my(P=1); n && !for(i=2, #n=factor(n)~, n[1, i]>1+(P*=sigma(n[1, i-1]^n[2, i-1])) && return);

%o forprime(p=2, 1000, if(is(p-1), print1(p-1", "))) \\ _Altug Alkan_, Nov 16 2015

%Y Cf. A005153, A006093, A225223.

%K nonn

%O 1,2

%A _Frank M Jackson_, Nov 16 2015