%I
%S 1,0,1,0,1,2,0,1,6,9,0,1,14,46,64,0,1,30,175,465,625,0,1,62,596,2471,
%T 5901,7776,0,1,126,1925,11634,40376,90433,117649,0,1,254,6042,51570,
%U 243454,757940,1626556,2097152,0,1,510,18651,220887,1376715,5580021,16146957,33609537,43046721
%N Triangle read by rows: T(n,k) is the number of parking functions of length n whose maximum element is k, where n >= 0 and 0 <= k <= n.
%C Elements in each row are increasing.
%H Alois P. Heinz, <a href="/A260693/b260693.txt">Rows n = 0..140, flattened</a>
%F T(n,0) = A000007(n).
%F T(n,1) = 1 for n>0.
%F T(n,2) = 2^n  2 = A000918(n).
%F T(n,n) = n^(n1) = A000169(n) for n>0.
%F Sum of nth row is A000272(n+1).
%F T(2n,n) = A291121(n).  _Alois P. Heinz_, Aug 17 2017
%e For example, T(3,2) = 6 because there are six parking functions of length 3 whose maximum element is 2, namely (1,1,2), (1,2,1), (2,1,1), (1,2,2), (2,1,2), (2,2,1).
%e Triangle starts:
%e 1;
%e 0, 1;
%e 0, 1, 2;
%e 0, 1, 6, 9;
%e 0, 1, 14, 46, 64;
%e 0, 1, 30, 175, 465, 625;
%e 0, 1, 62, 596, 2471, 5901, 7776;
%e 0, 1, 126, 1925, 11634, 40376, 90433, 117649;
%e 0, 1, 254, 6042, 51570, 243454, 757940, 1626556, 2097152;
%e 0, 1, 510, 18651, 220887, 1376715, 5580021, 16146957, 33609537, 43046721;
%Y Cf. A000007, A000169, A000272, A000918, A291121.
%K nonn,tabl
%O 0,6
%A _Ran Pan_, Nov 16 2015
%E Edited by _Alois P. Heinz_, Nov 26 2015
