login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A260538 Number of (n+2) X (2+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00000001 00000011 or 00010001. 1

%I #8 Dec 29 2018 07:07:58

%S 75,131,310,566,976,2229,4296,7576,16060,32285,58636,118158,240124,

%T 449449,881000,1782816,3414548,6616199,13258972,25773006,49827510,

%U 98896019,193756928,375388238,739657558,1453670523,2825958650,5543030018

%N Number of (n+2) X (2+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00000001 00000011 or 00010001.

%H R. H. Hardin, <a href="/A260538/b260538.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-2) + 5*a(n-3) + 4*a(n-4) - 3*a(n-5) - 2*a(n-6) - 10*a(n-8) - 6*a(n-9) + a(n-10) - a(n-11) + a(n-12) + a(n-13) for n>14.

%F Empirical g.f.: x*(75 + 131*x + 235*x^2 + 60*x^3 - 289*x^4 - 186*x^5 - 207*x^6 - 605*x^7 - 217*x^8 + 133*x^9 - 38*x^10 + 79*x^11 + 45*x^12 - 13*x^13) / (1 - x^2 - 5*x^3 - 4*x^4 + 3*x^5 + 2*x^6 + 10*x^8 + 6*x^9 - x^10 + x^11 - x^12 - x^13). - _Colin Barker_, Dec 29 2018

%e Some solutions for n=4:

%e ..1..0..0..1....0..0..0..0....1..0..0..0....0..0..0..1....0..0..0..1

%e ..1..0..0..1....0..1..1..0....1..1..0..0....1..0..0..1....0..0..0..0

%e ..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..1..0..0

%e ..0..0..0..0....0..0..0..0....0..0..0..0....0..0..0..0....0..1..0..0

%e ..1..0..0..1....0..1..0..0....0..1..0..0....1..0..0..1....0..0..0..0

%e ..1..0..0..0....0..1..0..0....0..1..0..0....1..0..0..0....0..0..0..0

%Y Column 2 of A260544.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jul 28 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 10 17:09 EDT 2024. Contains 375792 sequences. (Running on oeis4.)