login
Smallest number m such that 2*m = OddPrime(n) + q, q prime, and 2*m - prime(k) is not prime for k less than n.
3

%I #19 Aug 11 2015 16:43:18

%S 3,4,6,8,10,14,16,20,24,22,28,32,40,38,48,51,46,55,62,58,75,68,74,82,

%T 87,91,98,94,110,112,116,123,121,128,130,142,136,152,155,146,166,182,

%U 175,188,190,184,207,200,214,206,218,232,221,243,252,255,247,238

%N Smallest number m such that 2*m = OddPrime(n) + q, q prime, and 2*m - prime(k) is not prime for k less than n.

%C a(n) = A260580(n,1);

%C smallest number m such that the n-th odd prime p is needed to write 2*m = (p+q)/2.

%H Reinhard Zumkeller, <a href="/A260485/b260485.txt">Table of n, a(n) for n = 1..1000</a>

%o (Haskell)

%o a260485 = head . a260580_row

%Y Cf. A260580, A208662, A065091.

%K nonn

%O 1,1

%A _Reinhard Zumkeller_, Aug 11 2015