login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numerators in the asymptotic expansion of the Barnes G-function.
2

%I #19 Dec 15 2015 07:25:34

%S 1,-1,-1,157,65911,-918227,-234932171,592642957,149463069056137,

%T -16648792617135289,-286497627060094895989,3538603031642540133299,

%U 57674522110226646157873673,-713986824035720029666660757,-6478234620955890989297122598683

%N Numerators in the asymptotic expansion of the Barnes G-function.

%H G. C. Greubel and D. Turner, <a href="/A260447/b260447.txt">Table of n, a(n) for n = 0..175</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/BarnesG-Function.html">Barnes G-Function</a>.

%H Wikipedia, <a href="https://en.wikipedia.org/wiki/Barnes_G-function">Barnes G-function</a>.

%F G(x) ~ exp^(-3*x^2/4 + x + zeta'(-1)) * x^(x^2/2 - x + 5/12) * (2*Pi)^((x-1)/2) * (1 + (-1/12)/x + (-1/1440)/x^2 + (157/51840)/x^3 + (65911/87091200)/x^4 + ...).

%t Numerator[Exp[Series[LogBarnesG[x] - 1/12 - x + 3 x^2/4 + Log[Glaisher] + Log[2 Pi]/2 - x Log[2 Pi]/2 - 5 Log[x]/12 + x Log[x] - x^2 Log[x]/2, {x, Infinity, 20}]][[3]]]

%Y Cf. A260448 (denominators), A000178, A001163, A001164.

%K sign,frac

%O 0,4

%A _Vladimir Reshetnikov_, Nov 10 2015