Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 May 20 2018 11:56:29
%S 0,0,1,1,3,4,2,6,7,3,9,10,4,12,13,5,15,16,6,18,19,7,21,22,8,24,25,9,
%T 27,28,10,30,31,11,33,34,12,36,37,13,39,40,14,42,43,15,45,46,16,48,49,
%U 17,51,52,18,54,55,19,57,58,20,60,61,21,63,64,22,66,67,23
%N n/3 if 3 divides n, else n-1.
%H Peter Kagey, <a href="/A260316/b260316.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (0,0,2,0,0,-1).
%F a(3k) = k; a(3k + 1) = 3k; a(3k + 2) = 3k + 1.
%F a(n) = 2*a(n-3) - a(n-6) for n>5. - _Colin Barker_, Jul 23 2015
%F G.f.: x^2*(2*x^3+3*x^2+x+1) / ((x-1)^2*(x^2+x+1)^2). - _Colin Barker_, Jul 23 2015
%e a(5) = 5 - 1 = 4 because 5 is not divisible by 3.
%e a(12) = 12/3 = 4 because 12 is divisible by 3.
%t Table[If[Mod[n, 3] == 0, n/3, n - 1], {n, 0, 69}] (* or *)
%t CoefficientList[Series[x^2*(2 x^3 + 3 x^2 + x + 1)/((x - 1)^2*(x^2 + x + 1)^2), {x, 0, 69}], x] (* _Michael De Vlieger_, Jul 23 2015 *)
%t LinearRecurrence[{0,0,2,0,0,-1},{0,0,1,1,3,4},80] (* _Harvey P. Dale_, May 20 2018 *)
%o (Ruby) def a(n);(n%3==0)?n/3:n-1 end
%o (PARI) concat([0,0], Vec(x^2*(2*x^3+3*x^2+x+1) / ((x-1)^2*(x^2+x+1)^2) + O(x^100))) \\ _Colin Barker_, Jul 23 2015
%Y A029578 is an analogous case where the divisor is 2 instead of 3.
%K nonn,easy
%O 0,5
%A _Peter Kagey_, Jul 22 2015