login
Number of (n+2)X(6+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00000000 00000001 or 00001011
1

%I #4 Jul 22 2015 07:45:57

%S 714,2726,15306,60955,264502,1271212,5588466,24324681,110763233,

%T 496845217,2197293358,9844054535,44142441243,196695517269,

%U 878487450144,3930961242547,17556842722229,78410067260274,350493365447613

%N Number of (n+2)X(6+2) 0..1 arrays with each 3X3 subblock having clockwise perimeter pattern 00000000 00000001 or 00001011

%C Column 6 of A260284

%H R. H. Hardin, <a href="/A260282/b260282.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = a(n-1) +89*a(n-3) +43*a(n-4) +51*a(n-5) -2613*a(n-6) -3252*a(n-7) -2004*a(n-8) +42231*a(n-9) +67549*a(n-10) +40335*a(n-11) -442022*a(n-12) -745049*a(n-13) -402698*a(n-14) +3072812*a(n-15) +5054911*a(n-16) +2610067*a(n-17) -14752482*a(n-18) -22658541*a(n-19) -11279551*a(n-20) +49592551*a(n-21) +69444531*a(n-22) +34080096*a(n-23) -120192993*a(n-24) -148497038*a(n-25) -70980174*a(n-26) +216455315*a(n-27) +225940850*a(n-28) +99628106*a(n-29) -303015649*a(n-30) -249433031*a(n-31) -93548174*a(n-32) +340672379*a(n-33) +208428605*a(n-34) +59725911*a(n-35) -304726290*a(n-36) -137261595*a(n-37) -29696696*a(n-38) +208546864*a(n-39) +70096200*a(n-40) +12046824*a(n-41) -104295612*a(n-42) -26223876*a(n-43) -1357496*a(n-44) +38144900*a(n-45) +6862432*a(n-46) -1641504*a(n-47) -10861196*a(n-48) -1526020*a(n-49) +709392*a(n-50) +2264892*a(n-51) +362592*a(n-52) -63792*a(n-53) -260208*a(n-54) -33552*a(n-55) +13392*a(n-57) for n>63

%e Some solutions for n=4

%e ..1..0..0..0..0..0..0..0....0..0..0..0..1..0..0..1....0..0..0..0..0..0..0..0

%e ..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0....0..0..0..0..0..1..0..0

%e ..0..0..0..0..0..0..0..0....0..1..0..0..0..0..0..0....1..0..0..0..0..0..0..0

%e ..0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0....0..0..0..0..0..0..0..0

%e ..1..0..0..0..0..0..0..0....0..0..0..0..1..0..0..0....0..0..0..0..0..0..1..0

%e ..1..0..1..0..0..0..0..0....0..1..0..0..0..0..0..1....1..0..0..1..0..0..0..0

%Y Cf. A260284

%K nonn

%O 1,1

%A _R. H. Hardin_, Jul 22 2015