login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A259955 Number of (n+2) X (1+2) 0..1 arrays with each 3 X 3 subblock having clockwise perimeter pattern 00000000 00000001 or 00001001. 1
34, 67, 155, 353, 808, 1884, 4340, 9925, 22799, 52515, 120848, 277830, 638728, 1468871, 3378335, 7769445, 17866796, 41087200, 94488464, 217296769, 499716771, 1149192279, 2642787772, 6077609506, 13976655996, 32142038875, 73916854091 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

R. H. Hardin, Table of n, a(n) for n = 1..210

FORMULA

Empirical: a(n) = a(n-1) + 3*a(n-3) + 5*a(n-4) + 6*a(n-5) + 6*a(n-6) + 2*a(n-7) for n>8.

Empirical g.f.: x*(34 + 33*x + 88*x^2 + 96*x^3 + 84*x^4 + 72*x^5 + 16*x^6 - 4*x^7) / (1 - x - 3*x^3 - 5*x^4 - 6*x^5 - 6*x^6 - 2*x^7). - Colin Barker, Dec 27 2018

EXAMPLE

Some solutions for n=4:

..1..0..0....0..0..0....0..0..0....0..0..0....0..1..0....1..0..0....1..0..0

..0..0..0....0..0..1....0..0..0....0..0..0....0..1..0....0..1..0....0..0..0

..0..1..0....0..0..0....1..0..0....0..0..0....0..0..0....0..0..0....0..1..0

..0..0..0....0..0..0....0..0..0....1..0..0....0..0..0....0..0..0....0..1..0

..0..0..1....1..0..0....0..1..0....0..0..0....1..0..0....1..0..0....0..0..0

..1..0..0....0..0..0....0..0..1....0..0..0....0..0..0....0..0..0....1..0..0

CROSSREFS

Column 1 of A259962.

Sequence in context: A043984 A259962 A259894 * A259887 A028381 A277113

Adjacent sequences:  A259952 A259953 A259954 * A259956 A259957 A259958

KEYWORD

nonn

AUTHOR

R. H. Hardin, Jul 10 2015

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 28 15:08 EDT 2021. Contains 346335 sequences. (Running on oeis4.)