%I
%S 3,6,11,9,15,13,14,17,26,12,12,11,12,19,20,11,19,36,12,17,16,11,19,16,
%T 15,27,17,17,18,16,12,15,17,11
%N a(n) = number of integral points on the elliptic curve y^2 = x^3  (n^2)*x + 1, considering only nonnegative values of y.
%C For n>3, the number of integral points on y = x^3  (n^2)*x + 1 is at least 11. These 11 points correspond to the solutions x = {1, 0, n, n, n + 2, n + 2, n^2  1, n^2  2n + 2, n^2 + 2n + 2, n^4 + 2n, n^4  2n}.
%e a(0) = 3 because the integer points on y^2 = x^3 + 1 are (1, 0), (0, 1), and (2, 3).
%Y Cf. A081119, A081120, A259191.
%K nonn,more
%O 0,1
%A _Morris Neene_, Jun 14 2015
