login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

E.g.f. satisfies A(x) = 1/(3 - 2*exp(x*A(x))).
6

%I #18 Mar 06 2024 08:00:21

%S 1,2,18,302,7562,253542,10685794,543309230,32378850042,2214215333750,

%T 170939286647570,14707184259036414,1395561779648175274,

%U 144795755972202587462,16308198003201872476866,1981633767850818093910094,258406311809937562215099482,35994776359231593721760238102

%N E.g.f. satisfies A(x) = 1/(3 - 2*exp(x*A(x))).

%F E.g.f. A(x) satisfies:

%F (1) A(x) = (1/x) * Series_Reversion( 3*x - 2*x*exp(x) ).

%F (2) A(x) = 1 + (1/x) * Sum_{n>=1} d^(n-1)/dx^(n-1) 2^n * (exp(x)-1)^n * x^n / n!.

%F (3) A(x) = exp( Sum_{n>=1} d^(n-1)/dx^(n-1) 2^n * (exp(x)-1)^n * x^(n-1) / n! ).

%F a(n) = A259063(n+1) / (n+1). - _Vaclav Kotesovec_, Jun 19 2015

%F a(n) ~ (c/3)^(n+1) * n^(n-1) / (sqrt(c+1) * exp(n) * (c-1)^(2*n+1)), where c = LambertW(3*exp(1)/2). - _Vaclav Kotesovec_, Jun 19 2015

%F a(n) = (1/(n+1)!) * Sum_{k=0..n} 2^k * (n+k)! * Stirling2(n,k). - _Seiichi Manyama_, Mar 06 2024

%e E.g.f.: A(x) = 1 + 2*x + 18*x^2/2! + 302*x^3/3! + 7562*x^4/4! + 253542*x^5/5! +...

%e where A(3*x - 2*x*exp(x)) = 1/(3 - 2*exp(x)).

%t CoefficientList[1/x*InverseSeries[Series[3*x - 2*x*E^x, {x, 0, 21}], x],x] * Range[0, 20]! (* _Vaclav Kotesovec_, Jun 19 2015 *)

%o (PARI) {a(n) = local(A=1); A = (1/x)*serreverse(3*x - 2*x*exp(x +x^2*O(x^n) )); n!*polcoeff(A, n)}

%o for(n=0, 20, print1(a(n), ", "))

%o (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

%o {a(n)=local(A=1); A = 1 + (1/x)*sum(m=1, n+1, Dx(m-1, 2^m*(exp(x+x*O(x^n))-1)^m * x^m/m!)); n!*polcoeff(A, n)}

%o for(n=0, 25, print1(a(n), ", "))

%o (PARI) {Dx(n, F)=local(D=F); for(i=1, n, D=deriv(D)); D}

%o {a(n)=local(A=1+x+x*O(x^n)); A = exp(sum(m=1, n+1, Dx(m-1, 2^m*(exp(x+x*O(x^n))-1)^m * x^(m-1)/m!)+x*O(x^n))); n!*polcoeff(A, n)}

%o for(n=0, 25, print1(a(n), ", "))

%Y Cf. A259063, A052894, A258923.

%K nonn

%O 0,2

%A _Paul D. Hanna_, Jun 18 2015