login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A258887 Number of (n+2)X(1+2) 0..1 arrays with no 3x3 subblock diagonal sum less than the antidiagonal sum or central row sum less than the central column sum 1

%I #4 Jun 14 2015 10:15:10

%S 242,900,3036,10201,30870,94249,271350,786769,2190720,6135529,

%T 16733464,45832900,123292328,332697600,886883128,2369450329,

%U 6278170990,16660871929,43967201252,116153500969,305698600640,805156263025

%N Number of (n+2)X(1+2) 0..1 arrays with no 3x3 subblock diagonal sum less than the antidiagonal sum or central row sum less than the central column sum

%C Column 1 of A258894

%H R. H. Hardin, <a href="/A258887/b258887.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 5*a(n-1) +a(n-2) -38*a(n-3) +50*a(n-4) +12*a(n-5) -106*a(n-6) +374*a(n-7) -453*a(n-8) -237*a(n-9) +765*a(n-10) -1424*a(n-11) +1802*a(n-12) +486*a(n-13) -1738*a(n-14) +2108*a(n-15) -2944*a(n-16) -604*a(n-17) +2008*a(n-18) -1348*a(n-19) +2158*a(n-20) +534*a(n-21) -1310*a(n-22) +328*a(n-23) -657*a(n-24) -219*a(n-25) +417*a(n-26) +2*a(n-27) +46*a(n-28) +24*a(n-29) -38*a(n-30) -2*a(n-31) -a(n-32) -a(n-33) +a(n-34)

%e Some solutions for n=4

%e ..1..1..0....0..1..0....1..0..0....1..0..1....1..0..0....0..1..0....0..1..0

%e ..1..1..0....1..1..1....0..1..0....1..0..0....1..0..1....1..0..1....1..1..1

%e ..1..0..1....0..0..1....1..0..1....1..0..1....1..0..1....0..1..0....1..0..1

%e ..1..0..1....1..0..1....1..0..1....1..0..1....1..0..1....1..0..1....1..0..1

%e ..0..1..1....0..1..1....0..0..0....1..1..1....0..1..0....0..0..1....1..1..1

%e ..1..0..1....0..1..0....0..0..0....0..1..1....0..0..0....0..0..1....1..1..1

%Y Cf. A258894

%K nonn

%O 1,1

%A _R. H. Hardin_, Jun 14 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 24 22:17 EDT 2024. Contains 371964 sequences. (Running on oeis4.)