login
Number of length n 1..(4+1) arrays with every leading partial sum divisible by 2, 3, 5 or 7.
1

%I #6 Oct 29 2022 15:10:44

%S 4,20,80,264,809,2506,8432,30362,109520,391836,1408127,5002188,

%T 17308136,59463783,210199210,774578726,2918410859,10951007498,

%U 40430881133,146973680685,527988483182,1880363101497,6679919969564,23928818399537

%N Number of length n 1..(4+1) arrays with every leading partial sum divisible by 2, 3, 5 or 7.

%C Column 4 of A258631.

%H R. H. Hardin, <a href="/A258627/b258627.txt">Table of n, a(n) for n = 1..210</a>

%e Some solutions for n=8

%e ..3....5....5....4....5....4....4....2....4....5....5....4....4....2....4....5

%e ..5....5....3....4....3....3....1....5....2....5....5....1....2....4....3....4

%e ..4....5....2....2....4....5....4....5....1....2....4....3....1....3....5....3

%e ..3....3....4....4....4....2....3....3....5....3....2....4....3....1....3....2

%e ..1....2....2....4....4....2....2....1....4....3....4....4....5....4....3....2

%e ..4....1....4....4....1....4....2....2....4....4....4....2....1....1....2....2

%e ..2....1....1....2....3....4....2....2....5....3....2....2....4....1....5....4

%e ..4....4....4....4....4....2....2....4....2....3....1....4....2....4....1....2

%Y Cf. A258631.

%K nonn

%O 1,1

%A _R. H. Hardin_, Jun 06 2015