login
Number of (n+2)X(4+2) 0..1 arrays with no 3x3 subblock diagonal sum less than the antidiagonal sum or central row sum equal to the central column sum
1

%I #4 Jun 02 2015 10:06:46

%S 8100,27889,57600,161604,367236,996004,2414916,6441444,16224784,

%T 42954916,110502144,291282489,756800100,1988981604,5190626116,

%U 13618189809,35608444804,93330861001,244229686416,639777619321,1674684457216

%N Number of (n+2)X(4+2) 0..1 arrays with no 3x3 subblock diagonal sum less than the antidiagonal sum or central row sum equal to the central column sum

%C Column 4 of A258545

%H R. H. Hardin, <a href="/A258541/b258541.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 7*a(n-1) -9*a(n-2) -47*a(n-3) +153*a(n-4) -3*a(n-5) -629*a(n-6) +803*a(n-7) +883*a(n-8) -2747*a(n-9) +429*a(n-10) +4337*a(n-11) -2509*a(n-12) -5093*a(n-13) +3563*a(n-14) +7901*a(n-15) -6747*a(n-16) -11015*a(n-17) +13439*a(n-18) +9079*a(n-19) -16793*a(n-20) -6255*a(n-21) +16569*a(n-22) +6893*a(n-23) -19123*a(n-24) -4763*a(n-25) +20341*a(n-26) -477*a(n-27) -15813*a(n-28) +2087*a(n-29) +11281*a(n-30) -1447*a(n-31) -8951*a(n-32) +2143*a(n-33) +5847*a(n-34) -2461*a(n-35) -2623*a(n-36) +1465*a(n-37) +1001*a(n-38) -529*a(n-39) -441*a(n-40) +163*a(n-41) +165*a(n-42) -51*a(n-43) -35*a(n-44) +11*a(n-45) +3*a(n-46) -a(n-47) for n>48

%e Some solutions for n=4

%e ..0..1..0..0..0..0....0..1..1..0..1..1....1..0..1..0..0..0....1..0..1..0..1..0

%e ..1..1..1..1..0..1....1..0..1..0..0..0....1..1..1..1..0..1....0..0..0..0..0..1

%e ..1..0..1..0..1..0....0..0..1..0..1..1....0..0..0..0..0..0....0..1..1..1..1..1

%e ..1..0..1..0..1..0....1..0..1..0..0..0....1..1..1..1..1..1....0..0..0..0..0..1

%e ..0..0..1..0..1..1....0..0..1..0..1..1....0..1..0..1..0..1....0..0..1..1..1..1

%e ..0..0..0..0..1..0....0..0..0..0..0..0....0..1..0..1..0..1....0..0..0..0..1..1

%Y Cf. A258545

%K nonn

%O 1,1

%A _R. H. Hardin_, Jun 02 2015