login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Expansion (x-1)/(x^5+2*x^3+2*x-1).
0

%I #8 Apr 30 2015 21:05:48

%S 1,1,2,6,14,33,79,188,448,1068,2545,6065,14454,34446,82090,195633,

%T 466223,1111080,2647872,6310280,15038353,35838673,85408986,203542550,

%U 485072726,1156001777,2754927327,6565409092,15646364288,37287655956,88862131873

%N Expansion (x-1)/(x^5+2*x^3+2*x-1).

%F a(n) = Sum_{k=0..n} Sum_{i=0..(n-k)/2} C(2*k,i)*C(n-2*i-1,n-2*i-k).

%t CoefficientList[Series[(x - 1)/(x^5 + 2 x^3 + 2 x - 1), {x, 0, 33}], x] (* _Vincenzo Librandi_, Apr 30 2015 *)

%o (Maxima)

%o a(n):=sum(sum(binomial(2*k,i)*binomial(n-2*i-1,n-2*i-k),i,0,(n-k)/2),k,0,n);

%K nonn

%O 0,3

%A _Vladimir Kruchinin_, Apr 29 2015

%E More terms from _Vincenzo Librandi_, Apr 30 2015