login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A257484 Numbers n such that lambda(sum of divisors of n that are congruent to 0 mod 3) = lambda(sum of divisors of n that are congruent to 1 mod 3) = lambda(sum of divisors of n that are congruent to 2 mod 3) where lambda is the Carmichael function (A002322). 1

%I #24 Oct 15 2019 07:42:03

%S 78,222,234,294,312,366,375,438,582,618,666,834,876,882,888,936,942,

%T 1086,1095,1098,1125,1158,1176,1236,1314,1464,1482,1536,1545,1662,

%U 1746,1752,1842,1878,2013,2022,2028,2094,2166,2274,2316,2328,2382,2472,2502,2526

%N Numbers n such that lambda(sum of divisors of n that are congruent to 0 mod 3) = lambda(sum of divisors of n that are congruent to 1 mod 3) = lambda(sum of divisors of n that are congruent to 2 mod 3) where lambda is the Carmichael function (A002322).

%C A majority of numbers having three distinct prime divisors are in the sequence, but the number 1482 contains four distinct prime divisors {2,3,13,19}.

%C If a(n) is a squarefree number (subsequence 78, 222, 366, 438, 582, 618, 834, 942, 1086, 1095, 1158, 1482, 1545, 1662, 1842, 1878, 2013, 2022, 2094, 2274, 2382, 2526,...), the number 3*a(n) is also in the sequence because the sum of divisors of a(n) that are congruent to 0 mod 3 is equal to k, the sum of divisors of 3*a(n) that are congruent to 0 mod 3 is equal to 4k, and lambda(4*k) = lcm(lambda(4),lambda(k)) = lcm(2,lambda(k)) = lambda(k).

%C The sequence of the corresponding values lambda is {6, 18, 6, 18, 12, 30, 12, 36, 42, 12, 18, 12, 36, 18, 36, 12, 78, 12, 36, 30, 12, 96, 36, 12, 36, 60, 12, 30, 12, 138, 42, 36, 30, 156, 30, 156, 60, 60, 126, 36, 96, 84, 198, 12, 12, 210, 30,...}.

%H Amiram Eldar, <a href="/A257484/b257484.txt">Table of n, a(n) for n = 1..10000</a>

%e 78 is in the sequence because the divisors of 78 are {1,2,3,6,13,26,39,78} and the divisors congruent to 0 mod 3 are {3,6,39,78} => sum=126, the divisors congruent to 1 mod 3 are {1,13} => sum=14, the divisors congruent to 2 mod 3 are {2,26} => sum=28, and lambda(126)=lambda(14)=lambda(28) = 6.

%p with(numtheory):nn:=2600:

%p for n from 1 to nn do:

%p s0:=0:s1:=0:s2:=0:

%p x:=divisors(n):n0:=nops(x):

%p for i from 1 to n0 do:

%p q:=x[i]:

%p if irem(q,3)=0 then s0:=s0+q:

%p else

%p if irem(q,3)=1 then s1:=s1+q:

%p else

%p s2:=s2+q:

%p fi:fi:

%p od:

%p if lambda(s0)=lambda (s1) and lambda(s1)=lambda(s2)

%p then

%p printf(`%d, `,n):

%p else

%p fi:

%p od:

%t lst={}; f[x_] := Plus @@ Select[Divisors[x], Mod[#,3]==0 &]; g[x_] := Plus @@ Select[Divisors[x], Mod[#,3]==1 &];h[x_] := Plus @@ Select[Divisors[x], Mod[#,3]==2 &]; Do[If[CarmichaelLambda[f[n]]== CarmichaelLambda[g[n]]&& CarmichaelLambda[f[n]]== CarmichaelLambda[h[n]], AppendTo[lst, n]], {n, 1, 2600}]; lst

%o (PARI) lambda(n)=lcm(znstar(n)[2]);

%o isok(n) = {my(sd0=sumdiv(n, d, d*((d % 3)==0))); my(sd1=sumdiv(n, d, d*((d % 3)==1))); my(sd2=sumdiv(n, d, d*((d % 3)==2))); sd0 && sd1 && sd2 && (lambda(sd0) == lambda(sd1)) && (lambda(sd0)==lambda(sd2));}

%o lista(nn) = for (n=1, nn, if (isok(n), print1(n, ", "))); \\ _Michel Marcus_, May 02 2015

%Y Cf. A002322, A248881.

%K nonn

%O 1,1

%A _Michel Lagneau_, Apr 26 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 28 21:57 EDT 2024. Contains 371254 sequences. (Running on oeis4.)