Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #59 Jul 18 2023 09:22:24
%S 2,3,5,10,20,40,80,160,320,640,1280,2560,5120,10240,20480,40960,81920,
%T 163840,327680,655360,1310720,2621440,5242880,10485760,20971520,
%U 41943040,83886080,167772160,335544320,671088640,1342177280,2684354560,5368709120,10737418240
%N a(1) = 2, a(2) = 3; thereafter a(n) is the sum of all the previous terms.
%C Except for first three terms, a(n) is 10 times 2^(n-4).
%C These values comprise the tile values used in the "fives" variant of the game 2048, including 1 as the zeroth term. - _Michael De Vlieger_, Jul 18 2018
%H Colin Barker, <a href="/A257113/b257113.txt">Table of n, a(n) for n = 1..1000</a>
%H E. R. Berlekamp, <a href="/A257113/a257113.pdf">A contribution to mathematical psychometrics</a>, Unpublished Bell Labs Memorandum, Feb 08 1968 [Annotated scanned copy]
%H David Eppstein, <a href="https://arxiv.org/abs/1804.07396">Making Change in 2048</a>, arXiv:1804.07396 [cs.DM], 2018.
%H <a href="/index/Rec#order_01">Index entries for linear recurrences with constant coefficients</a>, signature (2).
%F a(n) = A020714(n-3) for n>2.
%F a(n) = A146523(n-2) for n>2. - _R. J. Mathar_, May 14 2015
%F G.f.: x*(1 - x)*(2 + x) / (1 - 2*x). - _Colin Barker_, Nov 17 2018
%t t = {2, 3}; For[k = 3, k <= 27, k++, AppendTo[t, Total@ t]]; t (* _Michael De Vlieger_, May 14 2015 *)
%t Join[{2, 3}, Table[5 2^n, {n, 0, 40}]] (* _Vincenzo Librandi_, May 15 2015 *)
%t Join[{2,3},NestList[2#&,5,40]] (* _Harvey P. Dale_, Apr 06 2018 *)
%o (Magma) [2,3] cat [5*2^n: n in [0..35]]; // _Vincenzo Librandi_, May 15 2015
%o (PARI) a(n) = if(n<3, n+1, 5*2^(n-3)); \\ _Altug Alkan_, Jul 18 2018
%o (PARI) Vec(x*(1 - x)*(2 + x) / (1 - 2*x) + O(x^40)) \\ _Colin Barker_, Nov 17 2018
%o (PARI) a(n) = ceil(5*2^(n-3)) \\ _Alan Michael Gómez Calderón_, Mar 30 2022
%Y Cf. A000079, A020714, A084215.
%K nonn,easy,less
%O 1,1
%A _Giovanni Teofilatto_, Apr 24 2015