login
G.f. A(x) satisfies A(F(x)) = x, where F(x) is the g.f. of A251690.
0

%I #11 Apr 17 2015 14:52:26

%S 1,1,4,17,80,407,2160,11859,66754,383210,2234921,13204685,78870454,

%T 475453371,2888991879,17675743626,108801199823,673302178725,

%U 4186513098755,26142455226568,163873586066647,1030820865387599,6504789754356175,41166205256238155,261217480924768212,1661598566523216015

%N G.f. A(x) satisfies A(F(x)) = x, where F(x) is the g.f. of A251690.

%C G.f. F(x) of A251690 satisfies the condition that G(F(x)) is a power series in x consisting entirely of positive integer coefficients such that G(F(x) - x^k) has negative coefficients for k>0, where G(x) = 1 + x*G(x)^3 is the g.f. of A001764.

%e G.f.: A(x) = x + x^2 + 4*x^3 + 17*x^4 + 80*x^5 + 407*x^6 + 2160*x^7 +...

%e such that the series reversion of A(x) yields the g.f. F(x) of A251690:

%e F(x) = x - x^2 - 2*x^3 - 2*x^4 - x^6 - 3*x^8 - 3*x^10 - 3*x^11 - 3*x^13 - 2*x^14 - 3*x^15 - x^16 - 2*x^17 - x^19 - 2*x^20 - 2*x^23 - 2*x^27 - 3*x^29 - 2*x^31 - x^33 - 3*x^35 - 2*x^36 - x^37 - x^38 - 3*x^39 - x^40 - 2*x^42 - 2*x^43 - 3*x^44 - x^45 - 3*x^46 - x^47 - x^48 - x^51 -...

%e in which all coefficients after the first are in the interval [-3,0].

%e RELATED SERIES.

%e Given G(x) = 1 + x*G(x)^3, which begins

%e G(x) = 1 + x + 3*x^2 + 12*x^3 + 55*x^4 + 273*x^5 + 1428*x^6 + 7752*x^7 +...

%e then

%e G(F(x)) = 1 + x + 2*x^2 + 4*x^3 + 8*x^4 + 17*x^5 + 36*x^6 + 78*x^7 + 169*x^8 + 370*x^9 + 813*x^10 + 1793*x^11 + 3971*x^12 +...+ A251691(n)*x^n +...

%e consists entirely of positive integer coefficients such that G(F(x) - x^k) has negative coefficients for k>0.

%e Also, a related series is defined by the limits:

%e 1/F'(x) = Limit ( A(F(x) + x^n) - x ) / x^n, and

%e 1/F'(x) = Limit ( x - A(F(x) - x^n) ) / x^n, where

%e 1/F'(x) = 1 + 2*x + 10*x^2 + 40*x^3 + 156*x^4 + 638*x^5 + 2544*x^6 + 10248*x^7 + 41152*x^8 + 165350*x^9 + 664477*x^10 + 2669644*x^11 + 10727319*x^12 + 43102392*x^13 + 173188681*x^14 + 695884096*x^15 + 2796104790*x^16 +...

%o (PARI) /* Prints initial N terms: */

%o N=50;

%o /* G(x) = 1 + x*G(x)^3 is the g.f. of A001764: */

%o {G=1+serreverse(x/(1+x +x*O(x^(3*N+10)))^3); }

%o /* Build the series reversion, then print coefficients at end: */

%o {A=[1, -1]; for(l=1, N, A=concat(A, -4);

%o for(i=1, 4, A[#A]=A[#A]+1;

%o V=Vec(subst(G, x, x*truncate(Ser(A)) +O(x^floor(3*#A+1)) ));

%o if((sign(V[3*#A])+1)/2==1, print1(".");break)););

%o Vec(serreverse(x*Ser(A)))}

%Y Cf. A251690, A251691, A001764.

%K nonn

%O 1,3

%A _Paul D. Hanna_, Apr 15 2015