Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #18 Sep 08 2022 08:46:12
%S 3,9,132,8547,13215,14110
%N Numbers k such that 7*R_(k+2) - 10^k is prime, where R_k = 11...1 is the repunit (A002275) of length k.
%C Also, numbers k such that (691*10^k-7)/9 is prime.
%C Terms from Kamada.
%C a(7) > 30000.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr/abaaa.htm">Near-repdigit numbers of the form ABAA...AA</a>.
%H Makoto Kamada, <a href="https://stdkmd.net/nrr/7/76777.htm#prime">Prime numbers of the form 7677...77</a>.
%H <a href="/index/Pri#Pri_rep">Index entries for primes involving repunits</a>.
%e For k=3, 7*R_5 - 10^3 = 77777 - 1000 = 76777 which is prime.
%t Select[Range[0, 30000], PrimeQ[(691*10^#-7)/9 ] &]
%o (Magma) [n: n in [0..400] | IsPrime((691*10^n-7) div 9)]; // _Vincenzo Librandi_, Apr 15 2015
%Y Cf. A002275.
%K more,hard,nonn
%O 1,1
%A _Robert Price_, Apr 14 2015