login
T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally and vertically
9

%I #4 Apr 12 2015 08:56:02

%S 512,2444,2444,9374,9072,9374,34698,38540,38540,34698,113474,137381,

%T 202462,137381,113474,330684,396712,721051,721051,396712,330684,

%U 914320,1041135,1948416,2212280,1948416,1041135,914320,2433544,2401667,4825736

%N T(n,k)=Number of (n+2)X(k+2) 0..1 arrays with every 3X3 subblock sum of the two medians of the central row and column plus the two sums of the diagonal and antidiagonal nondecreasing horizontally and vertically

%C Table starts

%C ......512.....2444.....9374....34698...113474...330684...914320...2433544

%C .....2444.....9072....38540...137381...396712..1041135..2401667...5134161

%C .....9374....38540...202462...721051..1948416..4825736..9929098..19908603

%C ....34698...137381...721051..2212280..4687873..9831933.14332984..24894558

%C ...113474...396712..1948416..4687873..7212370.12286621.12230530..19377777

%C ...330684..1041135..4825736..9831933.12286621.20148566.19349729..30191085

%C ...914320..2401667..9929098.14332984.12230530.19349729.20860406..34612866

%C ..2433544..5134161.19908603.24894558.19377777.30191085.34612866..59078346

%C ..6176662.10237795.36723020.39386679.24869452.44348914.56629422.100148760

%C .15093057.19375976.65041901.61894886.35469812.64717222.96884013.175274718

%H R. H. Hardin, <a href="/A256904/b256904.txt">Table of n, a(n) for n = 1..1796</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 68] for n>70

%F k=2: [order 66] for n>84

%e Some solutions for n=2 k=4

%e ..0..1..1..1..1..1....0..0..0..1..1..1....1..0..0..0..0..0....0..0..0..1..0..1

%e ..1..0..0..0..1..1....0..0..0..0..0..1....0..0..0..0..1..0....1..0..0..0..0..1

%e ..0..0..1..1..1..0....0..1..1..1..1..1....0..1..1..1..1..1....0..0..1..1..1..1

%e ..1..0..0..1..1..1....0..0..1..0..0..1....0..0..0..0..1..1....1..0..1..1..1..1

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Apr 12 2015