%I
%S 2380,600,329,384,472,270,344,452,447,692,832,478,624,828,831,1308,
%T 1552,894,1184,1580,1599,2540,2992,1726,2304,3084,3135,5004,5872,3390,
%U 4544,6092,6207,9932,11632,6718,9024,12108,12351,19788,23152,13374,17984
%N Number of (n+2) X (7+2) 0..1 arrays with no 3 x 3 subblock diagonal sum 1 and no antidiagonal sum 2 and no row sum 0 and no column sum 3.
%H R. H. Hardin, <a href="/A255800/b255800.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 3*a(n-6) - 2*a(n-12) for n>15.
%F Empirical g.f.: x*(2380 + 600*x + 329*x^2 + 384*x^3 + 472*x^4 + 270*x^5 - 6796*x^6 - 1348*x^7 - 540*x^8 - 460*x^9 - 584*x^10 - 332*x^11 + 4352*x^12 + 672*x^13 + 148*x^14) / ((1 - x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)*(1 - 2*x^6)). - _Colin Barker_, Dec 20 2018
%e Some solutions for n=4:
%e ..0..0..1..1..0..0..1..0..1....0..1..1..0..0..1..0..1..1
%e ..0..1..0..0..1..1..0..1..0....1..0..0..1..1..0..1..0..0
%e ..1..0..1..0..1..0..1..0..1....0..1..0..1..0..1..0..1..0
%e ..1..0..0..1..0..1..1..0..0....0..0..1..0..1..1..0..0..1
%e ..0..0..1..0..1..0..0..1..1....0..1..0..1..0..0..1..1..0
%e ..1..1..1..1..0..1..0..1..0....1..1..1..0..1..0..1..1..1
%Y Column 7 of A255801.
%K nonn
%O 1,1
%A _R. H. Hardin_, Mar 06 2015
|