|
|
A255796
|
|
Number of (n+2) X (3+2) 0..1 arrays with no 3 x 3 subblock diagonal sum 1 and no antidiagonal sum 2 and no row sum 0 and no column sum 3.
|
|
1
|
|
|
210, 178, 158, 198, 256, 258, 329, 344, 392, 456, 597, 638, 805, 892, 1028, 1144, 1493, 1622, 2021, 2268, 2636, 2864, 3713, 4038, 4981, 5580, 6524, 6992, 9009, 9766, 11957, 13324, 15644, 16624, 21313, 23014, 28021, 31052, 36572, 38640, 49345, 53094, 64373
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 5*a(n-6) - 8*a(n-12) + 4*a(n-18) for n>20.
Empirical g.f.: x*(210 + 178*x + 158*x^2 + 198*x^3 + 256*x^4 + 258*x^5 - 721*x^6 - 546*x^7 - 398*x^8 - 534*x^9 - 683*x^10 - 652*x^11 + 840*x^12 + 596*x^13 + 332*x^14 + 448*x^15 + 556*x^16 + 496*x^17 - 212*x^18 - 152*x^19) / ((1 - x)*(1 + x)*(1 - x + x^2)*(1 + x + x^2)*(1 - 2*x^6)^2). - Colin Barker, Dec 19 2018
|
|
EXAMPLE
|
Some solutions for n=4:
..1..1..1..0..1....0..0..1..1..0....0..1..1..0..1....1..0..0..1..1
..0..1..0..1..0....0..1..0..0..1....0..1..0..1..0....0..1..0..1..0
..1..0..1..1..0....1..0..1..0..1....1..0..1..1..0....0..0..1..0..1
..0..1..0..0..1....1..0..0..1..0....0..1..0..0..1....0..1..0..1..0
..1..0..1..0..1....0..1..1..0..0....1..0..1..0..1....1..0..1..0..1
..1..0..0..1..0....0..1..1..1..0....1..0..0..1..0....1..1..0..1..0
|
|
CROSSREFS
|
Column 3 of A255801.
Sequence in context: A259916 A050516 A100670 * A220441 A025392 A025383
Adjacent sequences: A255793 A255794 A255795 * A255797 A255798 A255799
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Mar 06 2015
|
|
STATUS
|
approved
|
|
|
|