login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Number of (n+2)X(4+2) 0..1 arrays with no 3x3 subblock diagonal sum 2 and no antidiagonal sum 2 and no row sum 0 and no column sum 0
1

%I #4 Mar 06 2015 12:31:33

%S 715,884,2141,5240,13857,38889,110678,318089,924343,2692440,7849989,

%T 22916697,66947552,195579671,571460971,1669900630,4879839649,

%U 14260067745,41672230910,121779090341,355876611009,1039983861888,3039166348135

%N Number of (n+2)X(4+2) 0..1 arrays with no 3x3 subblock diagonal sum 2 and no antidiagonal sum 2 and no row sum 0 and no column sum 0

%C Column 4 of A255792

%H R. H. Hardin, <a href="/A255788/b255788.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 4*a(n-1) -a(n-2) -3*a(n-3) -12*a(n-4) -14*a(n-5) +72*a(n-6) -29*a(n-7) +34*a(n-8) -157*a(n-9) +103*a(n-10) +144*a(n-11) -207*a(n-12) -16*a(n-13) -200*a(n-14) +618*a(n-15) -192*a(n-16) -360*a(n-17) +174*a(n-18) +152*a(n-19) +501*a(n-20) -1071*a(n-21) +138*a(n-22) +343*a(n-23) +168*a(n-24) -129*a(n-25) -535*a(n-26) +659*a(n-27) -58*a(n-28) +158*a(n-29) -341*a(n-30) -56*a(n-31) +124*a(n-32) -12*a(n-33) +8*a(n-34) -114*a(n-35) +129*a(n-36) -21*a(n-37) +52*a(n-38) -40*a(n-39) -32*a(n-40) +22*a(n-41) -10*a(n-42) +12*a(n-43) -4*a(n-44) for n>47

%e Some solutions for n=4

%e ..1..0..1..0..1..0....0..1..1..1..0..1....1..1..1..1..1..0....0..1..1..1..1..1

%e ..1..1..1..1..0..1....1..1..1..0..1..1....0..1..0..1..1..1....1..0..1..0..1..1

%e ..1..0..1..0..1..0....1..1..0..1..0..1....1..0..1..0..1..1....0..1..0..1..0..1

%e ..0..1..0..1..0..1....1..0..1..0..1..0....1..1..0..1..0..1....1..0..1..0..1..1

%e ..1..0..1..0..1..0....1..1..0..1..0..1....1..0..1..0..1..1....0..1..1..1..0..1

%e ..1..1..1..1..0..1....1..1..1..1..1..1....1..1..0..1..0..1....1..0..1..0..1..0

%Y Cf. A255792

%K nonn

%O 1,1

%A _R. H. Hardin_, Mar 06 2015