login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A255317 Expansion of psi(-x^3)^2 / chi(-x) in powers of x where psi(), chi() are Ramanujan theta functions. 7

%I

%S 1,1,1,0,0,1,1,2,1,0,0,1,1,1,0,1,0,0,2,1,1,1,1,1,0,1,1,0,1,0,1,0,1,1,

%T 0,1,1,1,1,0,2,2,0,1,1,0,1,0,1,0,0,2,0,1,0,0,0,2,2,0,1,1,2,1,0,1,0,1,

%U 0,1,1,1,1,0,0,2,2,1,0,0,0,0,1,1,0,0,1

%N Expansion of psi(-x^3)^2 / chi(-x) in powers of x where psi(), chi() are Ramanujan theta functions.

%C Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).

%H G. C. Greubel, <a href="/A255317/b255317.txt">Table of n, a(n) for n = 0..1000</a>

%H Michael Somos, <a href="/A010815/a010815.txt">Introduction to Ramanujan theta functions</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RamanujanThetaFunctions.html">Ramanujan Theta Functions</a>

%F Expansion of psi(x^6) * f(x, x^2) in powers of x where psi(), f() are Ramanujan theta functions.

%F Expansion of q^(-19/24) * eta(q^2) * eta(q^3)^2 * eta(q^12)^2 / (eta(q) * eta(q^6)^2) in powers of q.

%F Euler transform of period 12 sequence [ 1, 0, -1, 0, 1, 0, 1, 0, -1, 0, 1, -2, ...].

%e G.f. = 1 + x + x^2 + x^5 + x^6 + 2*x^7 + x^8 + x^11 + x^12 + x^13 + ...

%e G.f. = q^19 + q^43 + q^67 + q^139 + q^163 + 2*q^187 + q^211 + q^283 + ...

%t a[ n_] := SeriesCoefficient[ QPochhammer[ -x, x] EllipticTheta[ 2, Pi/4, x^(3/2)]^2 / (2 x^(3/4)), {x, 0, n}];

%o (PARI) {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^2 + A) * eta(x^3 + A)^2 * eta(x^12 + A)^2 / (eta(x + A) * eta(x^6 + A)^2), n))};

%K nonn

%O 0,8

%A _Michael Somos_, Feb 21 2015

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 29 05:30 EDT 2021. Contains 346340 sequences. (Running on oeis4.)