%I
%S 47,115,302,784,2086,5661,15406,41999,114801,314146,859864,2354180,
%T 6446675,17654832,48350751,132419875,362668438,993273148,2720374234,
%U 7450570937,20405675838,55887227675,153064418321,419214227578
%N Number of (n+2)X(1+2) 0..1 arrays with no 3x3 subblock diagonal sum 0 and no antidiagonal sum 0 and no row sum 1 and no column sum 1
%C Column 1 of A255149
%H R. H. Hardin, <a href="/A255142/b255142.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n-1) +8*a(n-3) -2*a(n-4) -6*a(n-5) -16*a(n-6) -13*a(n-7) +6*a(n-8) +14*a(n-9) +12*a(n-10) -4*a(n-12) -4*a(n-13)
%e Some solutions for n=4
%e ..1..0..1....1..1..1....1..1..0....1..0..1....1..0..1....1..0..1....1..0..1
%e ..1..1..1....1..1..1....1..1..1....1..1..1....1..1..0....0..1..1....1..1..1
%e ..1..1..1....1..0..1....1..1..1....1..1..1....0..1..1....1..1..0....0..1..1
%e ..1..0..1....1..1..1....1..1..0....0..1..1....1..1..1....1..1..1....1..1..1
%e ..1..1..0....0..1..1....1..0..1....1..1..1....1..1..0....1..1..1....1..0..1
%e ..0..1..1....1..0..1....1..1..1....1..1..0....1..1..1....1..0..1....1..1..1
%Y Cf. A255149
%K nonn
%O 1,1
%A _R. H. Hardin_, Feb 15 2015
|