OFFSET
0,2
COMMENTS
Period 6: repeat [1, 3, 4, 3, 1, 0].
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..1000
Index entries for linear recurrences with constant coefficients, signature (2,-2,1).
FORMULA
Euler transform of length 6 sequence [3, -2, -1, 0, 0, 1].
G.f.: (1 + x) / ((1 - x) * (1 - x + x^2)) = (1 - x^2)^2 * (1 - x^3) / ((1 - x)^3 * (1 - x^6)).
a(n) = a(-2-n) = a(n+6) for all n in Z.
a(n) = (n+1)*(Sum_{k=0..n} (-1)^k/(k+1)*binomial(n+k+1,2*k+1)) for n >= 0. - Werner Schulte, Jul 10 2017
Sum_{n>=0} a(n)/(n+1)*x^(n+1) = log(1-x+x^2)-2*log(1-x) for -1 < x < 1. - Werner Schulte, Jul 10 2017
a(n) = sqrt(3)*sin(Pi*n/3) - cos(Pi*n/3) + 2. - Peter Luschny, Jul 16 2017
a(n) = 2 + 2*cos(Pi/3*(n+4)) for n >= 0. - Werner Schulte, Jul 18 2017
EXAMPLE
G.f. = 1 + 3*x + 4*x^2 + 3*x^3 + x^4 + x^6 + 3*x^7 + 4*x^8 + 3*x^9 + ...
MATHEMATICA
a[ n_] := {3, 4, 3, 1, 0, 1}[[Mod[n, 6, 1]]];
a[ n_] := ChebyshevU[ n, Sqrt[3] / 2]^2;
CoefficientList[Series[(1 + x) / ((1 - x) (1 - x + x^2)), {x, 0, 100}], x] (* Vincenzo Librandi, Jul 14 2017 *)
PROG
(PARI) {a(n) = [1, 3, 4, 3, 1, 0][n%6 + 1]};
(PARI) {a(n) = simplify( polchebyshev( n, 2, quadgen(12) / 2)^2)};
(Magma) m:=60; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)/((1-x)*(1-x+x^2)))); // G. C. Greubel, Aug 03 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Michael Somos, Feb 07 2015
STATUS
approved