Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #19 Jul 16 2018 16:23:03
%S 252,462,1122,3432,12342,49632,216342,1001952,4863462,24500352,
%T 127161462,676195872,3668030982,20227217472,113076824982,639383508192,
%U 3649985092902,21003583828992,121677813214902,708891056106912,4149610383537222
%N a(n) = 15*4^n + 70*2^n + 35*3^n + 5^(n+1) + 6^n + 126.
%C This is the sequence of sixth terms of "fifth partial sums of m-th powers".
%H Colin Barker, <a href="/A254467/b254467.txt">Table of n, a(n) for n = 0..1000</a>
%H Luciano Ancora, <a href="https://oeis.org/A254370/a254370.pdf">Demonstration of formulas</a>, page 2.
%H Luciano Ancora, <a href="/A254364/a254364_1.pdf">Recurrence relations for partial sums of m-th powers</a>
%H <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (21,-175,735,-1624,1764,-720).
%F G.f.: -6*(21310*x^5 -34383*x^4 +20750*x^3 -5920*x^2 +805*x -42) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)). - _Colin Barker_, Jan 31 2015
%F a(n) = 21*a(n-1)-175*a(n-2)+735*a(n-3)-1624*a(n-4)+1764*a(n-5)-720*a(n-6). - _Colin Barker_, Jan 31 2015
%t Table[15×4^n+70×2^n+35×3^n+5^(n+1)+6^n+126, {n, 0, 25}] (* _Michael De Vlieger_, Jan 31 2015 *)
%t LinearRecurrence[{21,-175,735,-1624,1764,-720},{252,462,1122,3432,12342,49632},30] (* _Harvey P. Dale_, Jul 16 2018 *)
%o (PARI) vector(30, n, n--; 15*4^n + 70*2^n + 35*3^n + 5^(n+1) + 6^n + 126) \\ _Colin Barker_, Jan 31 2015
%Y Cf. A168614, A254368, A254369, A254370, A254468.
%K nonn,easy
%O 0,1
%A _Luciano Ancora_, Jan 31 2015