%I #18 Apr 17 2016 11:41:42
%S 0,0,0,0,0,0,1,0,1,0,1,1,2,1,2,1,4,3,6,3,6,5,8,7,10,7,12,9,14,11,16,
%T 14,19,17,22,20,28,23,31,26,34,32,40,35,43,38,51,46,59,51,64,61,74,71,
%U 84,76,94,86,104,96,114,108,126,120,138,132,157,146,171
%N A component sequence of A254296.
%C This sequence is a component of the formula for counting A254296.
%C If m=ceiling(log_3(2k)), define n=(3^(m-1)+1)/2+(3^(m-2))-k for k in the range (3^(m-1)+1)/2<=k<=(3^(m-1)-1)/2+(3^(m-2)). Then this sequence gives the first 3^(m-2) terms.
%H Md. Towhidul Islam, <a href="/A254436/b254436.txt">Table of n, a(n) for n = 1..6561</a>
%H Md Towhidul Islam & Md Shahidul Islam, <a href="http://arxiv.org/abs/1502.07730">Number of Partitions of an n-kilogram Stone into Minimum Number of Weights to Weigh All Integral Weights from 1 to n kg(s) on a Two-pan Balance</a>, arXiv:1502.07730 [math.CO], 2015.
%F If m=ceiling(log_3(2k)), define n=(3^(m-1)+1)/2+(3^(m-2))-k for k in the range (3^(m-1)+1)/2<=k<=(3^(m-1)-1)/2+(3^(m-2)).
%F Then a(n)=Sum_{d=ceiling((3k+2)/5)..(3^(m-1)-1)/2} Sum_{p=ceiling((d-1)/3..2d-k-1} A254296(p).
%Y Cf. A254296, A254430, A254431, A254432, A254433, A254435, A254437, A254438, A254439, A254440.
%K nonn
%O 1,13
%A _Md. Towhidul Islam_, Feb 28 2015