OFFSET
0,1
COMMENTS
This is the sequence of fourth terms of "fifth partial sums of m-th powers".
LINKS
Colin Barker, Table of n, a(n) for n = 0..1000
Luciano Ancora, Demonstration of formulas, page 2.
Luciano Ancora, Recurrence relations for partial sums of m-th powers
Index entries for linear recurrences with constant coefficients, signature (10,-35,50,-24).
FORMULA
G.f.: -2*(533*x^3-638*x^2+238*x-28) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Jan 30 2015
a(n) = 10*a(n-1)-35*a(n-2)+50*a(n-3)-24*a(n-4). - Colin Barker, Jan 30 2015
MATHEMATICA
Table[15 2^n + 4^n + 5 3^n + 35, {n, 0, 30}] (* Bruno Berselli, Jan 30 2015 *)
LinearRecurrence[{10, -35, 50, -24}, {56, 84, 156, 354}, 30] (* Harvey P. Dale, Dec 04 2020 *)
PROG
(PARI) vector(30, n, n--; 15*2^n + 4^n + 5*3^n + 35) \\ Colin Barker, Jan 30 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Luciano Ancora, Jan 29 2015
STATUS
approved