Recurrence relations for partial sums of m-th powers

By Luciano Ancora

We build with Excel the table that calculates, for successive additions (left cell + top cell) the partial sums of powers of natural numbers:

n	n ^m	1 th sums	2 th sums	3 th sums
1				
2				
3			d	
4		b	е	
5	а	С	f	
6				
7				

We want to obtain the recurrence relation for the second sums, that is, a formula for calculating the n-th term in the column "2th sums" as a function of the previous terms.

The formula that we seek is obtained by analyzing the data in the table as follows:

c = a + b e = b + d f = c + e = a + b + e = a + e - d + ef = 2e - d + a

Indicating with a(n,m) the n-th term of the sequence, we therefore have:

2th sums:
$$a_{(n,m)} = 2a_{(n-1,m)} - a_{(n-2,m)} + n^m$$

Extending the previous scheme to the successive columns, one obtains:

3th sums:
$$a_{(n,m)} = 3a_{(n-1,m)} - 3a_{(n-2,m)} + a_{(n-3,m)} + n^m$$

4th sums: $a_{(n,m)} = 4a_{(n-1,m)} - 6a_{(n-2,m)} + 4a_{(n-3,m)} - a_{(n-4,m)} + n^m$

From this point forward we continue (successfully) using <u>Pascal's triangle</u>, by alternating signs, with the following results:

5th sums:
$$a_{(n,m)} = 5a_{(n-1,m)} - 10a_{(n-2,m)} + 10a_{(n-3,m)} - 5a_{(n-4,m)} + a_{(n-5,m)} + n^m$$

6th: $a_{(n,m)} = 6a_{(n-1,m)} - 15a_{(n-2,m)} + 20a_{(n-3,m)} - 15a_{(n-4,m)} + 6a_{(n-5,m)} - a_{(n-6,m)} + n^m$

and so on

All recurrence relations are valid, by *induction*, for each (n, m).