%I #37 Jun 10 2016 10:45:33
%S 16,38416,130321,160000,923521,1500625,13845841,14776336,16777216,
%T 38950081,163047361,181063936,312900721,322417936,384160000,937890625,
%U 1303210000,1600000000,3722098081,7992538801,9235210000,13841287201,15006250000,16610312161,17748900625,31414372081,37141383841
%N Fourth powers whose reversal is a prime.
%C Intersection of A000583 and A095179.
%C As the last digits of primes are not even or 5 (except for primes 2 and 5), the terms do not start with an even number or 5. If m is an integer such that the reversal of m^4 is prime and sqrt4(n) is the fourth root of n then m is not of the form [sqrt4(2 * 10^k), sqrt4(3 * 10^k)] or [sqrt4(4 * 10^k), sqrt4(7 * 10^k)] for nonnegative k etc. - _David A. Corneth_, Jun 02 2016
%C All terms == 1 mod 3. - _Robert Israel_, Jun 03 2016
%H Chai Wah Wu, <a href="/A253912/b253912.txt">Table of n, a(n) for n = 1..25659</a>
%e Example: a(1) = 16 is a fourth power because 16 = 2^4 and the reverse of 16 is 61 which is a prime number.
%t Select[Range[440]^4, PrimeQ[FromDigits@ Reverse@ IntegerDigits@ #] &] (* _Michael De Vlieger_, Jan 19 2015 *)
%o (Python)
%o from sympy import isprime
%o A253912_list = [n for n in (i**4 for i in range(10**6)) if isprime(int(str(n)[::-1]))] # _Chai Wah Wu_, Jun 02 2016
%Y Cf. A000583 (fourth power), A095179 (reversal of n is prime).
%Y Cf. A058996 (primes whose reversal is a fourth power).
%K nonn,base
%O 1,1
%A _Rabii Younès_, Jan 18 2015