%I
%S 2,2,2,2,2,9,96,32,86,60,1079,755,312,3509,1829,49958
%N a(n) is least natural number b such that b^(2^n) + (b-1)^(2^n) is prime.
%C When a(n) is 2, the corresponding prime is a Fermat prime, otherwise it is a so-called extended generalized Fermat prime sometimes denoted xGF(n, b, b-1) or similar.
%H Henri Lifchitz & Renaud Lifchitz, <a href="http://www.primenumbers.net/prptop/searchform.php?form=x%5E16384%2By%5E16384">PRP Top Records, search for x^16384+y^16384</a>, related to a(14).
%F a(n) = A080208(n) + 1.
%e For n = 5, 2^5 = 32 is the exponent. The numbers 1^32 + 0^32, 2^32 + 1^32, ..., 8^32 + 7^32 are not prime, but 9^32 + 8^32 is prime, so a(5) = 9. - _Michael B. Porter_, Mar 28 2018
%o (PARI) a(n)=for(b=2,10^10,if(ispseudoprime(b^(2^n)+(b-1)^(2^n)),return(b)))
%Y Cf. A056993, A080208.
%K nonn,hard,more
%O 0,1
%A _Jeppe Stig Nielsen_, Jan 07 2015
%E a(13) from _Jeppe Stig Nielsen_, Mar 27 2018
%E a(14) found by Henri Lifchitz in 2007, from _Jeppe Stig Nielsen_, Apr 17 2018
%E a(15) found by _Kellen Shenton_, from _Jeppe Stig Nielsen_, Nov 27 2020
|