login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253062
Largest order of a rooted tree that does not contain a rooted caterpillar subtree of order n.
1
0, 1, 2, 3, 5, 7, 11, 16, 23, 34, 49, 70, 103, 148, 211, 310, 445, 634, 931, 1336, 1903, 2794, 4009, 5710, 8383, 12028, 17131, 25150, 36085, 51394, 75451, 108256, 154183, 226354, 324769, 462550, 679063, 974308, 1387651, 2037190, 2922925, 4162954, 6111571
OFFSET
1,3
LINKS
Stephan Brandt, Janina Müttel, Dieter Rautenbach, The circumference of the square of a connected graph, Combinatorica 34 (2014), no. 5, 547--559. MR3276436.
FORMULA
See Maple code.
Conjectures from Colin Barker, Feb 21 2015: (Start)
a(n) = a(n-1)+3*a(n-3)-3*a(n-4) for n>10.
G.f.: -x^2*(x^8-x^7+x^6-x^5+x^4+x^3-x^2-x-1) / ((x-1)*(3*x^3-1)).
(End)
MAPLE
f:=proc(k, i)
if i=1 then (23*3^k-1)/2
elif i=2 then (33*3^k-1)/2
else (47*3^k-1)/2; fi;
end;
g:=proc(n) local r, s;
s := (n mod 3); if s=0 then s:=s+3; fi; r:=(n-s)/3;
f(r-2, s);
end;
a:=[0, 1, 2, 3, 5, 7, 11, 16, 23];
for n from 10 to 50 do a:=[op(a), g(n)]; od;
CROSSREFS
Cf. A253063.
Sequence in context: A232481 A232482 A332062 * A117590 A308991 A326467
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Jan 21 2015
STATUS
approved