%I
%S 238,1125,1125,5567,6699,5567,28642,42647,42647,28642,148002,288263,
%T 361750,288263,148002,771768,1984711,3321526,3321526,1984711,771768,
%U 4034881,13720545,31101826,42339952,31101826,13720545,4034881,21118867
%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every consecutive three elements in every row and column having exactly 2 distinct values, in every diagonal 1 or 2 distinct values, in every antidiagonal 2 or 3 distinct values, and new values 0 upwards introduced in row major order
%C Table starts
%C .......238........1125.........5567.........28642........148002........771768
%C ......1125........6699........42647........288263.......1984711......13720545
%C ......5567.......42647.......361750.......3321526......31101826.....293166855
%C .....28642......288263......3321526......42339952.....551697392....7249491353
%C ....148002.....1984711.....31101826.....551697392...10071548995..185083140208
%C ....771768....13720545....293166855....7249491353..185083140208.4776875393694
%C ...4034881....95366448...2779386634...95923903361.3432079272308
%C ..21118867...664294791..26422127321.1272678322381
%C .110669161..4628430243.251365182149
%C .580192543.32278030363
%H R. H. Hardin, <a href="/A252910/b252910.txt">Table of n, a(n) for n = 1..67</a>
%F Empirical for column k:
%F k=1: [linear recurrence of order 63] for n>64
%e Some solutions for n=2 k=4
%e ..0..0..1..1..2..2....0..0..1..1..0..0....0..0..1..1..2..1....0..0..1..0..0..2
%e ..1..1..0..0..2..0....1..1..2..1..1..3....0..1..0..0..2..2....3..0..0..3..0..0
%e ..0..0..1..0..0..2....0..1..1..0..0..3....3..0..0..1..1..2....3..3..0..0..1..0
%e ..1..0..0..2..0..0....1..3..1..1..0..0....3..1..1..0..1..1....1..0..1..0..0..1
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Dec 24 2014
