login
Number of (n+2)X(1+2) 0..2 arrays with every consecutive three elements in every row having 2 or 3 distinct values, in every column 1 or 2 distinct values, in every diagonal 2 distinct values, and in every antidiagonal 2 distinct values, and new values 0 upwards introduced in row major order
1

%I #10 Apr 24 2016 11:33:35

%S 510,3102,18931,116455,717426,4422437,27268086,168141437,1036853114,

%T 6393927528,39429835481,243155950132,1499502119578,9247200652700,

%U 57026177743891,351672685653992,2168719051076815,13374208876564791

%N Number of (n+2)X(1+2) 0..2 arrays with every consecutive three elements in every row having 2 or 3 distinct values, in every column 1 or 2 distinct values, in every diagonal 2 distinct values, and in every antidiagonal 2 distinct values, and new values 0 upwards introduced in row major order

%C Column 1 of A252882

%H R. H. Hardin, <a href="/A252877/b252877.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 11*a(n-1) -18*a(n-2) -145*a(n-3) +408*a(n-4) +563*a(n-5) -1841*a(n-6) -2330*a(n-7) +5591*a(n-8) +6265*a(n-9) -15079*a(n-10) -8443*a(n-11) +36439*a(n-12) +25483*a(n-13) -82685*a(n-14) -72792*a(n-15) +101442*a(n-16) +103253*a(n-17) -53685*a(n-18) -87588*a(n-19) +86244*a(n-20) +30056*a(n-21) -129500*a(n-22) -33020*a(n-23) +27681*a(n-24) +108437*a(n-25) +70424*a(n-26) +4296*a(n-27) -177103*a(n-28) -89262*a(n-29) +215400*a(n-30) +78361*a(n-31) -192514*a(n-32) -61489*a(n-33) +144053*a(n-34) +45457*a(n-35) -75460*a(n-36) -38134*a(n-37) +33292*a(n-38) +17209*a(n-39) -10708*a(n-40) -4570*a(n-41) +2823*a(n-42) +740*a(n-43) -590*a(n-44) -40*a(n-45) +66*a(n-46) -2*a(n-47) -3*a(n-48)

%e Some solutions for n=4

%e ..0..1..1....0..0..1....0..1..0....0..0..1....0..1..0....0..1..2....0..1..1

%e ..1..0..0....1..0..1....1..2..0....2..2..1....2..1..1....0..0..2....2..1..2

%e ..1..0..1....0..1..2....0..1..2....2..2..0....0..1..0....2..0..1....0..0..1

%e ..1..0..1....0..1..2....1..1..0....2..0..0....0..0..1....0..1..1....0..0..2

%e ..0..0..1....2..0..1....1..1..0....1..0..2....1..0..1....2..1..1....1..2..2

%e ..1..2..0....0..1..2....0..2..2....2..0..2....0..0..2....0..0..1....1..0..2

%K nonn

%O 1,1

%A _R. H. Hardin_, Dec 24 2014