Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #25 Dec 26 2018 03:41:43
%S 1,1,1,2,1,2,1,3,2,2,1,4,1,2,2,5,1,4,1,4,2,2,1,7,2,2,3,4,1,5,1,7,2,2,
%T 2,9,1,2,2,7,1,5,1,4,4,2,1,12,2,4,2,4,1,7,2,7,2,2,1,11,1,2,4,10,2,5,1,
%U 4,2,5,1,16,1,2,4,4,2,5,1,12,5,2,1,11,2
%N Number of ways to write n as n = a*b*c*d*e with 1 <= a <= b <= c <= d <= e <= n.
%C Starts the same as, but is different from A218320 where a(n) = A218320(n) for n = 1..31. First values of n such that a(n) differs from A218320(n) are 32, 48, 64, 72, 80, ... .
%C Also starts the same as A001055, but differs from it for n = 64, ...
%H Michael De Vlieger, <a href="/A252665/b252665.txt">Table of n, a(n) for n = 1..10000</a>
%H Michael De Vlieger, <a href="/A252665/a252665.txt">Records and first positions of records</a>
%e a(12) = 4 because we can write 12 = 1*1*1*1*12 = 1*1*1*2*6 = 1*1*1*3*4 = 1*1*2*2*3.
%p with(numtheory):
%p b:= proc(n, i, t) option remember;
%p `if`(n=1, 1, `if`(t=1, `if`(n<=i, 1, 0),
%p add(b(n/d, d, t-1), d=select(x->x<=i, divisors(n)))))
%p end:
%p a:= proc(n) local l, m;
%p l:= sort(ifactors(n)[2], (x, y)-> x[2]>y[2]);
%p m:= mul(ithprime(i)^l[i][2], i=1..nops(l));
%p b(m, m, 5)
%p end:
%p seq(a(n), n=1..100); # _Alois P. Heinz_, Aug 31 2017
%t Table[c=0; Do[If[i<=j<=k<=l<=m && i*j*k*l*m==n, c++], {i, t=Divisors[n]}, {j, t}, {k, t}, {l, t}, {m, t}]; c, {n, 90}]
%t (* Second program: *)
%t b[n_, i_, t_] := b[n, i, t] = If[n == 1, 1, If[t == 1, Boole[n <= i], Sum[b[n/d, d, t - 1], {d, Select[Divisors@ n, # <= i &]}]]]; Parallelize@ Array[b[#, #, 5] &@ Apply[Times, Power @@@ Sort[FactorInteger[#], #1[[2]] > #2[[2]] &]] &, 120] (* _Michael De Vlieger_, Aug 31 2017, after _Jean-François Alcover_ at A218320 *)
%Y Cf. A001055, A034836, A218320.
%K nonn
%O 1,4
%A _Michel Lagneau_, Dec 20 2014