%I #4 Dec 18 2014 09:14:21
%S 13104,213120,2576592,11206944,187695936,2316305760,10519316352,
%T 177838495488,2214324086400,10320806426112,175062867028992,
%U 2188646614639104,10347503929104384,175737142491033600
%N Number of (5+2)X(n+2) 0..3 arrays with every 3X3 subblock row and diagonal sum equal to 1 3 4 6 or 7 and every 3X3 column and antidiagonal sum not equal to 1 3 4 6 or 7
%C Row 5 of A252544
%H R. H. Hardin, <a href="/A252548/b252548.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 1804*a(n-3) -939040*a(n-6) +145285120*a(n-9) -1639972864*a(n-12) +4294967296*a(n-15)
%e Some solutions for n=1
%e ..1..3..0....3..0..1....0..1..3....0..1..3....3..3..1....3..3..1....3..0..1
%e ..1..2..1....1..0..0....1..1..2....3..0..1....1..3..3....2..1..1....3..2..2
%e ..3..0..1....1..2..1....1..0..0....2..1..1....1..2..1....0..1..0....2..3..2
%e ..1..3..3....3..3..1....0..1..0....3..1..3....3..3..1....0..3..1....0..3..1
%e ..1..2..1....1..0..3....1..1..2....0..3..1....1..0..0....2..1..1....0..2..2
%e ..3..3..1....1..2..1....1..3..0....2..1..1....1..2..1....0..1..0....2..0..2
%e ..1..3..0....0..0..1....0..1..0....0..1..3....3..3..1....3..0..1....0..0..1
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 18 2014