%I #4 Dec 14 2014 14:01:14
%S 8132,3797,4416,5860,8391,11662,17166,25025,36612,54416,82121,119328,
%T 180164,266685,401534,600440,916707,1359940,2087210,3122195,4773764,
%U 7180420,11064993,16584382,25660862,38641561,59663236,90104864,139698239
%N Number of (n+2)X(4+2) 0..3 arrays with every 3X3 subblock row and column sum equal to 0 3 5 6 or 7 and every 3X3 diagonal and antidiagonal sum not equal to 0 3 5 6 or 7
%C Column 4 of A252148
%H R. H. Hardin, <a href="/A252144/b252144.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-2) +3*a(n-3) +a(n-4) -3*a(n-5) +4*a(n-6) -3*a(n-7) +3*a(n-8) -15*a(n-9) -6*a(n-11) +2*a(n-12) +3*a(n-13) -a(n-14) +9*a(n-15) -a(n-16) +9*a(n-17) -4*a(n-18) -3*a(n-20) +3*a(n-21) -a(n-24) for n>31
%e Some solutions for n=4
%e ..2..2..3..0..0..0....2..1..3..1..2..3....0..1..2..0..1..2....2..3..0..0..3..0
%e ..3..1..2..3..1..2....0..3..0..3..0..2....3..2..1..0..2..1....1..2..3..1..2..3
%e ..0..2..1..0..2..1....3..1..3..1..3..1....0..3..0..0..0..0....2..1..0..2..1..0
%e ..0..0..3..0..0..3....0..3..0..3..0..2....0..1..2..0..1..2....0..0..0..0..3..0
%e ..3..1..2..3..1..1....3..1..3..1..3..3....0..2..1..3..2..1....1..2..0..1..2..3
%e ..0..2..1..0..2..1....3..2..0..3..0..2....0..0..0..0..3..0....2..1..0..2..1..0
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 14 2014