%I #9 May 03 2024 22:36:49
%S 6,24,42,48,1326,1676,2772,4428,4820,4940,5328,5472,6318,9950,10074,
%T 12942,13724,14372,16290,18428,22776,22818,23800,23952,25134,28614,
%U 28800,31212,31394,32060,33716,36526,37320,39228,39446,39528,43670,43798,44490,45570,47700,48000
%N Numbers n such that n^2 is a sum of 2 and also of 4 consecutive primes.
%H Zak Seidov, <a href="/A252066/b252066.txt">Table of n, a(n) for n = 1..507</a>
%e 6^2=36=17+19=5+7+11+13, 18^2=324=157+163=73+79+83+89.
%t Module[{nn=10^7,p2,p4},p2=Total/@Partition[Prime[Range[nn]],2,1];p4=Total/@Partition[ Prime[Range[nn]],4,1];Select[Sqrt[Intersection[p2,p4]],IntegerQ]] (* The program generates the first 20 terms of the sequence. *) (* _Harvey P. Dale_, May 03 2024 *)
%Y Intersection of A051395 and A074924.
%K nonn
%O 1,1
%A _Zak Seidov_, Dec 13 2014