The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A252015 T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum 1 3 6 or 8 and every diagonal and antidiagonal sum not 1 3 6 or 8 9

%I

%S 756,1168,1168,1110,1602,1110,1618,1406,1406,1618,1970,2002,1434,2002,

%T 1970,2458,3128,2170,2170,3128,2458,3246,4570,4770,3814,4770,4570,

%U 3246,4410,6562,8930,8482,8482,8930,6562,4410,5802,10980,14450,16994,23074

%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum 1 3 6 or 8 and every diagonal and antidiagonal sum not 1 3 6 or 8

%C Table starts

%C ..756..1168...1110...1618....1970....2458.....3246.....4410......5802......7874

%C .1168..1602...1406...2002....3128....4570.....6562....10980.....18568.....26866

%C .1110..1406...1434...2170....4770....8930....14450....33530.....63546....103410

%C .1618..2002...2170...3814....8482...16994....29954....67714....136002....239874

%C .1970..3128...4770...8482...23074...58970...104034...288370....744818...1308322

%C .2458..4570...8930..16994...58970..159514...303906..1091906...2992258...5688946

%C .3246..6562..14450..29954..104034..303906...630978..2189170...6377986..13220098

%C .4410.10980..33530..67714..288370.1091906..2189170..9398338..36100290..71955330

%C .5802.18568..63546.136002..744818.2992258..6377986.36100290.147443266.312958962

%C .7874.26866.103410.239874.1308322.5688946.13220098.71955330.312958962.727410882

%H R. H. Hardin, <a href="/A252015/b252015.txt">Table of n, a(n) for n = 1..612</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 14] for n>22

%F k=2: [order 15] for n>22

%F k=3: a(n) = a(n-1) +13*a(n-3) -13*a(n-4) -40*a(n-6) +40*a(n-7) for n>14

%F k=4: a(n) = a(n-1) +8*a(n-3) -8*a(n-4) for n>12

%F k=5: a(n) = a(n-1) +21*a(n-3) -21*a(n-4) -104*a(n-6) +104*a(n-7) for n>16

%F k=6: a(n) = a(n-1) +34*a(n-3) -34*a(n-4) -273*a(n-6) +273*a(n-7) for n>17

%F k=7: a(n) = a(n-1) +21*a(n-3) -21*a(n-4) for n>15

%e Some solutions for n=4 k=4

%e ..2..1..3..2..1..0....0..1..2..3..1..2....3..1..2..3..1..2....1..1..1..1..1..1

%e ..0..1..2..0..1..2....2..1..0..2..1..3....2..1..3..2..1..3....1..2..3..1..2..3

%e ..1..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..1..1....1..3..2..1..3..2

%e ..2..1..3..2..1..3....3..1..2..3..1..2....0..1..2..3..1..2....1..1..1..1..1..1

%e ..0..1..2..0..1..2....2..1..3..2..1..3....2..1..3..2..1..0....1..2..3..1..2..0

%e ..1..1..1..1..1..1....1..1..1..1..1..1....1..1..1..1..1..1....1..3..2..1..3..2

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 12 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 23 18:08 EDT 2022. Contains 353993 sequences. (Running on oeis4.)