%I #5 Dec 12 2014 10:18:36
%S 1198,6094,43572,340164,2708560,21680096,173871388,1395137546,
%T 11195863432,89849246828,721067681954,5786805299392,46441055544156,
%U 372705154430856,2991084930572790,24004468769964970,192643986237872586
%N Number of (n+2)X(1+2) 0..3 arrays with no row, column, diagonal or antidiagonal in any 3X3 subblock summing to 2 4 5 or 7
%C Column 1 of A252000
%H R. H. Hardin, <a href="/A251993/b251993.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 11*a(n-1) -26*a(n-2) +37*a(n-3) -205*a(n-4) +376*a(n-5) -230*a(n-6) +1043*a(n-7) -725*a(n-8) -1519*a(n-9) +184*a(n-10) -8070*a(n-11) +14352*a(n-12) -9141*a(n-13) +26804*a(n-14) -17445*a(n-15) +5186*a(n-16) -14288*a(n-17) -9925*a(n-18) +8264*a(n-19) -130*a(n-20) +3216*a(n-21) +7430*a(n-22) -5116*a(n-23) +3318*a(n-24) -1008*a(n-25) -3540*a(n-26) -4*a(n-27) +840*a(n-28) -312*a(n-29) +1008*a(n-30) -384*a(n-31) for n>35
%e Some solutions for n=3
%e ..3..3..2....0..3..0....0..3..0....0..0..0....3..0..0....0..0..1....3..0..3
%e ..3..3..3....0..0..3....3..3..3....3..3..0....3..3..0....3..0..0....0..0..0
%e ..3..0..3....0..3..0....0..3..3....0..3..0....0..0..0....0..0..0....0..0..0
%e ..0..3..0....0..3..0....0..0..3....3..0..0....3..0..0....0..3..0....3..0..3
%e ..0..0..3....0..3..0....3..0..0....3..3..3....0..0..0....0..0..3....0..0..3
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 12 2014
|