%I #4 Dec 09 2014 11:26:50
%S 1973,3501,18227,96649,504148,2670355,14105237,74389411,393421321,
%T 2079994178,10983498977,58012069015,306545373362,1619740160876,
%U 8557028037932,45206323422254,238837210760217,1261858577287914
%N Number of (n+2)X(5+2) 0..2 arrays with every row, column, diagonal or antidiagonal in each 3X3 subblock summing to a prime
%C Column 5 of A251819
%H R. H. Hardin, <a href="/A251816/b251816.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = a(n-1) +3*a(n-2) +43*a(n-3) +222*a(n-4) +482*a(n-5) +681*a(n-6) -1029*a(n-7) -6287*a(n-8) -8465*a(n-9) -1385*a(n-10) +20916*a(n-11) +46692*a(n-12) +15066*a(n-13) -66599*a(n-14) -101537*a(n-15) -23823*a(n-16) +122361*a(n-17) +169438*a(n-18) +64400*a(n-19) -97706*a(n-20) -193601*a(n-21) -163645*a(n-22) -11117*a(n-23) +89565*a(n-24) +111435*a(n-25) +63076*a(n-26) -37544*a(n-27) -1865*a(n-28) -32113*a(n-29) +27664*a(n-30) +17688*a(n-31) -7392*a(n-32) +18202*a(n-33) -26599*a(n-34) +19810*a(n-35) -13865*a(n-36) +11432*a(n-37) -6215*a(n-38) +2983*a(n-39) -2054*a(n-40) +805*a(n-41) -244*a(n-42) +151*a(n-43) -24*a(n-44) -11*a(n-45) +5*a(n-46) for n>48
%e Some solutions for n=4
%e ..1..1..1..1..1..1..1....1..1..1..1..1..1..1....1..1..1..1..1..0..1
%e ..0..1..1..0..1..1..0....0..1..1..1..1..1..1....0..1..1..1..1..1..1
%e ..1..1..1..1..1..1..1....1..1..1..1..0..1..1....1..1..0..1..1..1..0
%e ..1..1..1..1..1..1..1....1..0..1..1..1..1..1....1..1..1..1..1..1..1
%e ..1..0..1..1..1..0..1....1..1..1..0..1..1..1....1..1..1..1..1..1..1
%e ..1..1..1..1..1..1..1....1..1..1..1..1..0..1....0..1..1..0..1..1..0
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 09 2014
|