login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

T(n,k)=Number of (n+1)X(k+1) 0..4 arrays with every 2X2 subblock summing to a prime
8

%I #4 Dec 03 2014 17:04:18

%S 234,2264,2264,21862,45470,21862,211680,915152,915152,211680,2047194,

%T 18567350,38529532,18567350,2047194,19818328,376244106,1644478410,

%U 1644478410,376244106,19818328,191708742,7639226604,70039777210

%N T(n,k)=Number of (n+1)X(k+1) 0..4 arrays with every 2X2 subblock summing to a prime

%C Table starts

%C .......234.........2264...........21862.............211680..............2047194

%C ......2264........45470..........915152...........18567350............376244106

%C .....21862.......915152........38529532.........1644478410..........70039777210

%C ....211680.....18567350......1644478410.......148463964846.......13364799461286

%C ...2047194....376244106.....70039777210.....13364799461286.....2540293097889030

%C ..19818328...7639226604...2992599553368...1208313756081050...485520243093380470

%C .191708742.154952279458.127661562848818.109013443872596196.92544866490813863710

%H R. H. Hardin, <a href="/A251515/b251515.txt">Table of n, a(n) for n = 1..112</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 9]

%F k=2: [order 35]

%e Some solutions for n=2 k=4

%e ..0..1..0..0..1....0..0..0..0..0....0..0..0..0..0....0..0..0..1..0

%e ..2..0..2..1..1....2..0..3..0..3....4..3..0..3..0....4..3..0..4..2

%e ..1..0..3..1..2....3..2..0..4..4....4..0..4..4..4....0..0..0..3..2

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 03 2014