Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #8 Nov 28 2018 08:03:59
%S 22,71,219,701,2193,6980,21966,69681,219860,696284,2199557,6960357,
%T 21999804,69591126,220014756,695843558,2200194145,6958021138,
%U 22001843859,69577286765,220014836192,695749296057,2200100105526,6957283657381
%N Number of (n+1) X (2+1) 0..1 arrays with every 2 X 2 subblock having a single 1 or two 1s on the same edge or main diagonally.
%H R. H. Hardin, <a href="/A251286/b251286.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n-1) + 7*a(n-2) - 9*a(n-3) - 7*a(n-4) + 7*a(n-5) for n>6.
%F Empirical g.f.: x*(22 + 27*x - 77*x^2 - 36*x^3 + 51*x^4 + x^5) / (1 - 2*x - 7*x^2 + 9*x^3 + 7*x^4 - 7*x^5). - _Colin Barker_, Nov 28 2018
%e Some solutions for n=4:
%e ..0..1..1....1..1..0....1..1..1....0..0..1....0..0..0....1..1..1....1..1..1
%e ..0..0..0....0..0..0....0..0..0....1..0..0....0..1..0....0..0..0....0..0..0
%e ..1..0..1....0..1..0....1..1..0....0..1..0....0..0..1....1..1..0....0..1..1
%e ..1..0..1....0..0..0....0..0..0....0..0..1....1..0..0....0..0..1....0..0..0
%e ..1..0..0....0..1..1....0..1..0....1..0..0....0..1..1....1..0..0....1..1..1
%Y Column 2 of A251292.
%K nonn
%O 1,1
%A _R. H. Hardin_, Dec 01 2014