%I #8 Nov 26 2018 16:16:20
%S 10,25,64,164,421,1081,2776,7129,18308,47017,120745,310087,796339,
%T 2045090,5252026,13487806,34638235,88954966,228446570,586677031,
%U 1506654001,3869260528,9936705457,25518600938,65534698261,168300632413
%N Number of (n+1) X (1+1) 0..1 arrays with no 2 X 2 subblock having the minimum of its diagonal elements less than the absolute difference of its antidiagonal elements.
%H R. H. Hardin, <a href="/A251194/b251194.txt">Table of n, a(n) for n = 1..210</a>
%F Empirical: a(n) = 2*a(n-1) + 2*a(n-2) - a(n-3) - a(n-4)
%F Empirical g.f.: x*(10 + 5*x - 6*x^2 - 4*x^3) / (1 - 2*x - 2*x^2 + x^3 + x^4). - _Colin Barker_, Nov 26 2018
%e Some solutions for n=4:
%e ..1..0....1..1....1..1....0..1....0..1....1..1....1..0....1..0....1..1....0..0
%e ..0..0....1..0....1..0....1..1....1..0....1..1....1..1....0..1....0..1....0..1
%e ..0..1....0..1....1..1....1..1....0..1....1..0....0..1....1..0....1..1....1..0
%e ..1..1....1..0....1..0....1..0....1..0....1..1....1..1....1..1....1..0....0..0
%e ..0..1....0..0....1..1....0..1....1..1....1..1....0..1....0..1....1..1....0..0
%Y Column 1 of A251201.
%K nonn
%O 1,1
%A _R. H. Hardin_, Nov 30 2014