login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A251161 Number of (n+1)X(2+1) 0..3 arrays with no 2X2 subblock having the maximum of its diagonal elements greater than the absolute difference of its antidiagonal elements 1

%I

%S 552,5054,32083,172457,966212,5804029,35120036,209215196,1237992428,

%T 7337306495,43581646090,258955567227,1538048767915,9133057761093,

%U 54233933431813,322072252767751,1912682875370183,11358698340772792

%N Number of (n+1)X(2+1) 0..3 arrays with no 2X2 subblock having the maximum of its diagonal elements greater than the absolute difference of its antidiagonal elements

%C Column 2 of A251167

%H R. H. Hardin, <a href="/A251161/b251161.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = 19*a(n-1) -168*a(n-2) +970*a(n-3) -4128*a(n-4) +13682*a(n-5) -36699*a(n-6) +81639*a(n-7) -152877*a(n-8) +243851*a(n-9) -334774*a(n-10) +399797*a(n-11) -419549*a(n-12) +389921*a(n-13) -322480*a(n-14) +237093*a(n-15) -153433*a(n-16) +85514*a(n-17) -39795*a(n-18) +15112*a(n-19) -4770*a(n-20) +1351*a(n-21) -352*a(n-22) +70*a(n-23) -7*a(n-24) for n>27

%e Some solutions for n=4

%e ..0..0..0....1..2..3....1..0..1....1..0..0....1..0..0....3..0..3....0..2..3

%e ..1..0..0....0..1..2....1..1..0....1..1..0....2..0..0....3..0..1....1..0..1

%e ..1..1..1....2..0..2....2..1..1....0..1..1....2..1..1....3..3..0....1..0..0

%e ..0..0..1....3..0..2....3..0..0....0..0..0....3..0..1....0..3..0....2..1..1

%e ..2..0..0....3..0..2....3..3..3....2..2..1....3..2..1....0..3..2....3..2..0

%K nonn

%O 1,1

%A _R. H. Hardin_, Nov 30 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 26 01:21 EDT 2022. Contains 354073 sequences. (Running on oeis4.)