|
|
A251148
|
|
Number of (n+1) X (7+1) 0..2 arrays with every 2 X 2 subblock summing to 4 and no 2 X 2 subblock having exactly two nonzero entries.
|
|
1
|
|
|
853, 1075, 1413, 1987, 2925, 4491, 7101, 11491, 18917, 31587, 53389, 91275, 157789, 275843, 487717, 872259, 1577901, 2886539, 5337725, 9971363, 18803813, 35765155, 68549453, 132276107, 256749085, 500872771, 981317541, 1929582211, 3805684077
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
LINKS
|
|
|
FORMULA
|
Empirical: a(n) = 3*a(n-1) - 5*a(n-3) + a(n-4) + 2*a(n-5).
Empirical g.f.: x*(853 - 1484*x - 1812*x^2 + 2013*x^3 + 1486*x^4) / ((1 - x)*(1 + x)*(1 - 2*x)*(1 - x - x^2)). - Colin Barker, Nov 26 2018
|
|
EXAMPLE
|
Some solutions for n=4:
..1..0..1..1..1..1..2..1....2..0..2..0..1..0..1..1....0..1..1..0..1..2..1..1
..2..1..2..0..2..0..1..0....1..1..1..1..2..1..2..0....2..1..1..2..1..0..1..1
..1..0..1..1..1..1..2..1....2..0..2..0..1..0..1..1....0..1..1..0..1..2..1..1
..1..2..1..1..1..1..0..1....1..1..1..1..2..1..2..0....2..1..1..2..1..0..1..1
..1..0..1..1..1..1..2..1....2..0..2..0..1..0..1..1....0..1..1..0..1..2..1..1
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|