The OEIS is supported by the many generous donors to the OEIS Foundation.

Number of length n+1 0..4 arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero

1

`%I #4 Nov 26 2014 12:12:08
`

`%S 1,65,89,1293,4853,34441,163043,915663,4537317,23671551,118358549,
`

`%T 601565301,3011330309,15155615651,75845220727,380253505733,
`

`%U 1902264449049,9522274036139,47624961772074,238244610944161,1191402062810086
`

`%N Number of length n+1 0..4 arrays with the sum of the maximum of each adjacent pair multiplied by some arrangement of +-1 equal to zero
`

`%C Column 4 of A250646
`

`%H R. H. Hardin, <a href="/A250642/b250642.txt">Table of n, a(n) for n = 1..110</a>
`

`%e Some solutions for n=6
`

`%e ..0....3....1....2....2....0....3....1....4....4....2....1....3....0....3....4
`

`%e ..1....2....2....0....3....2....0....1....1....3....0....2....3....1....0....4
`

`%e ..1....4....2....0....3....2....2....3....0....1....3....2....1....1....2....2
`

`%e ..4....2....1....1....0....1....4....0....0....2....2....3....3....0....0....4
`

`%e ..0....3....2....3....1....4....3....1....2....4....1....4....1....1....2....4
`

`%e ..3....3....4....0....1....1....2....2....3....1....3....3....4....3....1....2
`

`%e ..1....2....0....1....3....2....1....1....4....0....0....3....2....1....0....4
`

`%K nonn
`

`%O 1,2
`

`%A _R. H. Hardin_, Nov 26 2014
`